
Explorable Web Apps to Teach AI to

Non-Majors∗

Justin Li
Computer Science and Cognitive Science

Occidental College
Los Angeles, CA 90041

justinnhli@oxy.edu

Abstract

We report on the experience of using web apps to teach AI to students
with no programming experience. These apps allow students to explore
methodological limitations and modeling assumptions, and provide them
with algorithmic thinking experience. We conclude with qualitative stu-
dent feedback and general observations about this approach.

1 Introduction

Computational methods are increasingly important across many disciplines in
the physical and social sciences. While many fields simply ask students to
visualize the results of machine learning, other fields have a more substantial
intersection with CS. Cognitive science students, for example, may be inter-
ested in topics such as natural language processing (NLP), human-computer
interaction (HCI), and artificial intelligence (AI). Similarly, economics students
may look at algorithmic approaches to game theory, and urban planners may
want to create agent-based models of sociological phenomenon.

Guest-lecturing to and co-teaching these non-majors present a unique ped-
agogical challenge. Psychology or economics students may have no experience

∗Copyright c©2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



in programming, and thus lack the prerequisite knowledge to complete tradi-
tional CS assignments such as large coding projects. At the same time, these
interdisciplinary collaborations are an opportunity to introduce computational
thinking [4] to non-majors. This raises the question of what pedagogical ap-
proaches could be applied to meet the needs of these non-CS students.

This paper reports on our experience teaching cognitive science students us-
ing three custom-built, interactive, “explorable” web apps, including a course
catalog prerequisite extractor, an pattern-matching chatbot, and a Bayesian
network calculator. We deployed these web apps in co-taught and cross-listed
courses between computer science and cognitive science, at both the introduc-
tory and advanced levels. The source code for these apps and their associated
assignments are available on GitHub1, with hosted versions on Heroku2.

These apps present graphical user interface (GUI) that allows the students
to engage in algorithmic thinking and problem solving without writing code.
These apps not only demonstrate the topic under discussion, but with guided
questions, additionally provide three benefits:

1. allow students to discover the limits of a particular approach

2. allow students to examine modeling assumptions

3. provide an algorithmic problem solving experience

Below, we describe how each app operates, a sketch of the associated as-
signments, and how they provide some of the benefits listed above.

2 Course Catalog Prerequisite Extraction

The prerequisite extraction app was originally created for an upper-level, cross-
listed AI course, where only half the students have any CS experience. As part
of the module on NLP and information retrieval, students were given a course
catalog and asked to extract the prerequisites of each course onto separate
lines, as a department code and a course number. Students were allowed to
use any programming language of their choice or, for non-technical students,
to use the prerequisite extraction app. The app must therefore allow students
to manipulate text in a repeatable way without writing code.

To achieve this goal, students use a GUI to specify how the course catalog
should be processed (Figure 1). Students can add transformation rules that
select and split lines of text, as well as insert, delete, and replace words as
necessary. Once the transformations are specified, the app applies them to a

1https://github.com/justinnhli/ccsc-sw-2019-apps
2https://ccsc-sw-2019-apps.herokuapp.com/

2

https://github.com/justinnhli/ccsc-sw-2019-apps
https://ccsc-sw-2019-apps.herokuapp.com/


Figure 1: The Course Catalog Prerequisite Extraction app interface.

copy of the course catalog, and shows the original course descriptions and the
extracted text side-by-side. This provides immediate feedback for students,
who may then modify their transformation rules to fine-tune the extraction.

While students are often quickly able to extract the sentence with pre-
requisites, the details eventually make perfect extraction difficult. Differences
between “CS 101 and 102,” “CS 101 and CS 102,” and “Computer Science 101,
102” force students to create robust sequences of transformations. Other de-
scriptions such as “any CS 100-level course except CS 130” require additional
semantics and data processing to match the required output format. Once stu-
dents are satisfied with their outputs, they are asked to score their “program”
and identify failure cases. The assignment therefore forces students to confront
the variability of language, and to experience the challenges both of creating
algorithms and of evaluating the performance of an AI.

The interactive app and the questions together demonstrate Benefits 1,
2, and 3. First, despite the seeming generality of the transformations, it is
impossible to perfectly extract all prerequisites. Even with a tedious number
of transformations to deal with all wording variations, the rules would still fail
on negations and other edge cases. The accompanying questions on evaluation
further emphasize the limits of such an approach (Benefit 1).

Students are also led to discover misconceptions in their understanding of
the domain (Benefit 2). Through this exercise, they realize that course catalogs
are not as uniform as they might expect, and even minor variations such as
extra commas may cause their programs to fail. For cognitive science students
in particular, this may be their first encounter with the difficulty of NLP.

Finally, although students did not write any code, they nonetheless solved
a problem with algorithmic/computational thinking (Benefit 3). Much like
writing code, students were given the goal of extracting prerequisites, and had
to assemble smaller computational building blocks in the appropriate order
to achieve the desired result. In essence, the app’s GUI provides a domain-
specific language for information extraction, without the potential for syntax
errors and typos. Through this app, non-CS students can get a sense of the
problem solving that programmers engage in.

3



3 Pattern-Matching Chatbot

The pattern-matching chatbot app was originally created for a guest lecture on
the relationship between AI and gender. Mimicking one of the first chatbots,
ELIZA, it simply tries to match each received message against a list of patterns,
and selects a random response from the first matching pattern. The app was
later adapted for a co-taught introductory cognitive science course, as well as
advanced courses in both AI and HCI, both of which were cross-listed. Again,
the majority of students using the app had no CS experience.

To illustrate the operation of the chatbot, the app provides both a chat win-
dow and a textbox where students can edit the patterns and responses. The
patterns are indicated by lines that begin with “@”, while possible responses
are indicated by “%”. The chatbot is also able to match variable text, which
are represented by repeated capital letters (e.g. “XXXXX”) usable in both the
patterns and the responses. Whenever the patterns change, they are dynami-
cally loaded into the chatbot, so students have immediate feedback on how the
new patterns affect the flow of the conversation.

The accompanying instructions for the app depend on whether the students
are absolute beginners or more advanced students. Beginners are simply asked
to modify the patterns to remove the mystery of how chatbots might work. For
advanced students, this app served as a leaping-off point for deeper discussion
of conversational interfaces. By attempting to design a useful chatbot with
this limited architecture, students see how semantics, conversational context,
and even timing may be necessary for human-level language understanding.

The chatbot app demonstrates Benefits 1 and 3. Although it is obvious that
pattern-matching is fragile, students may not be able to articulate the exact
scenarios in which the approach breaks down. By placing students in the chat,
the app allows students to evaluate the effectiveness of the chatbot (Benefit 1).
Advanced students designing chatbots are also forced to consider the effect of
patterns being matched in order, and to structure the patterns to provide both
specific and generic responses. While the pattern-and-response inputs to the
chatbot app are less expressive than that of the prerequisite extraction app, it
nonetheless asks students to consider how computational units work together
to create the desired output (Benefit 3).

4 Bayesian Network Calculator

The Bayesian network app was created for the cross-listed AI course. Bayesian
networks are a graphical model for reasoning about causality and the proba-
bility of occurrence of events. In addition to being commonly used in AI and
robotics, it has also gained traction as a general modeling tool in the sciences.

4



This app allows students to visualize a Bayesian network and calculate
probabilities. Students enter the causal relationships between events and the
conditional probability tables in a textbox, which the app visualizes graphically.
Students can then further specify observations of events or to calculate the
posterior probability based on those observations.

This app demonstrates Benefits 1 and 2. Since students are asked to create
and evaluate a Bayesian model of their choice, they must justify the causal
relationships and the conditional probabilities, which often requires data that
students do not have (Benefit 1). Students are then prompted for cases where
the model gives unintuitive results and to explain the discrepancy — whether
the network fails to model the phenomenon due incorrect causality/probabil-
ities, or if it is their intuition that is faulty. These questions and the app
together provoke students to critique their models and potentially discover
insight about the phenomenon, much as real modelers might (Benefit 2).

5 Qualitative Student Feedback

Student evaluations and feedback over the past three years provide informal
evaluation of these interactive apps as pedagogical tools. For example, in the
reflection component of the assignment, a student wrote that the prerequisite
extraction app provided the “challenge of figuring out what worked and what
didn’t work,” which hints at the algorithmic problem solving required. Another
student described how the “huge amount of variability in how people convey
information which makes it difficult to correctly isolate desired information,”
and that as a result, “coding for information retrieval must be tailored specif-
ically to the corpus.” These comments suggest that the app was effective in
provoking examination of the current limits of the NLP. Similarly, a student
reflected on their Bayesian network and how they “didn’t think about how those
probabilities would interact with each other”, a failure in their model of the phe-
nomenon that led to discrepancies between the prediction and their intuition.
In general, the feedback suggest that these open-ended web apps engaged stu-
dents in critically assessing the AI techniques. Further study may be able to
quantify the effect on student learning compared to other activities.

6 Comments and Conclusion

Interactive pedagogical material is not new. Multiple digital CS textbooks now
contain auto-graded coding exercises, which have been shown to improve test
scores as compared to static textbooks [1]. Others have applied the lab science
paradigm to teach AI, with the goal of increased engagement and providing

5



experiential learning to students [2].
What differentiates the apps in this paper is the focus on non-CS students.

We draw inspiration from “explorable explanations”, online documents that
combine a narrative with interactive “illustrations” [3]. Such documents em-
phasize accessibility to a broad audience by preferring graphical interfaces, and
often explore a combinatorial space where the user can make self-guided dis-
coveries. Although the web apps presented in this paper are designed with
supporting instruction and guided questions for the classroom context, the fo-
cus on accessibility is maintained. Explorable explanations have influenced
other parts of the design of these web apps. All of the apps have textual inputs
(or have inputs directly encoded into the URL), which makes the result easily
sharable for collaboration. The open-ended input of text transformation rules
and Bayesian network structure aims to make discoveries possible, and it nat-
urally leads to discussions of limitations and modeling assumptions. All three
apps are also relatively domain independent, and can by used by non-major
students to engage in computational thinking in their domain of expertise.

To the best of our knowledge, neither explorable explanations nor educa-
tional web apps have received much discussion in the literature. This paper
reported our experience with three different interactive web apps, their design,
their use in coursework, and feedback from students hinting at the learning
outcomes. In our experience, the presentation of CS content to non-CS stu-
dents have benefited from use of interactive web apps that allow students to
explore CS concepts without writing code. We anticipate that as conventions
develop and as supporting frameworks mature, these approaches for non-CS
pedagogy will receive more attention and its benefits more formally studied.

References

[1] Alex Daniel Edgcomb et al. Student performance improvement using in-
teractive textbooks: A three-university cross-semester analysis. In 2015
ASEE Annual Conference & Exposition, Seattle, Washington, 2015.

[2] Stephanie Elizabeth August. Enhancing expertise, sociability, and liter-
acy through teaching artificial intelligence as a lab science. In 2012 ASEE
Annual Conference & Exposition, San Antonio, Texas, 2012. ASEE Con-
ferences.

[3] Bret Victor. Explorable explanations. http://worrydream.com/

ExplorableExplanations/, 2011.

[4] Jeannette M. Wing. Computational thinking. Communications of the
ACM, 49(1):33–35, 2006.

6

http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/

	Introduction
	Course Catalog Prerequisite Extraction
	Pattern-Matching Chatbot
	Bayesian Network Calculator
	Qualitative Student Feedback
	Comments and Conclusion

