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Abstract
Applications of cognitive architectures have increasingly incorporated statistical classifiers as com-
ponents for long-lived agents. As these classifiers receive more training data over the agent’s life-
time, however, prior results stored in long-term memory may become incorrect, leading to false
positives and negatives during memory retrieval. This paper proposes a heuristic strategy that can
efficiently identify such misclassified data, by leveraging semantic information inherent in the clas-
sification labels. The key insight is that a classifier-independent distance function can be defined on
the labels that correlates with false positive classifications. We show that this strategy can be applied
to color naming, image recognition, and text classification, in all cases out-performing baselines.
Implemented in a cognitive architecture, the heuristic halves the number of re-classifications re-
quired to retrieve the desired knowledge, thus building on and complementing the existing memory
mechanisms.

1. Introduction

Over the last decade, the cognitive systems community has advanced the role of long-term declara-
tive memory in agent architectures, including implementations of distinct semantic and episodic
memories and explorations of mechanisms such as partial matching and spontaneous retrieval.
These memory systems are used by long-lived agents to store knowledge acquired from its ac-
cumulated experience and from instruction from human collaborators. At the same time, complex
domains such as cognitive robotics have pushed architectures to tightly integrate statistical clas-
sifiers, which convert low level visual, audio, and textual data into symbolic structures for agent
reasoning. As agents operate in the environment, acquire new percepts, and faces new task de-
mands, these classifiers must be fine tuned to increase accuracy – or replaced entirely – to produce
more nuanced output. However, how this learning process interacts with the existing memory mech-
anisms remains an open question, and the coupling of statistical and symbolic systems gives rise to
unique challenges.

One such challenge is that of knowledge obsolescence, where previously learned knowledge is
no longer accurate in light of new information. As classifiers are refined, its previous output that
is stored in long-term memory may become outdated, incongruent with the output of the updated
classifier. Inputs that were previously classified may, with more training data, be discovered to have
been classified incorrectly; and yet, in long-term symbolic memory, the previous label persists.
Misclassifications of this kind may lead to false positives for the old label and false negatives for
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the new label, and may indirectly introduce additional error if used for future learning. At the
same time, for long-lived agents with a wealth of perceptual data stored in memory, the number of
misclassifications may be small, making it difficult and computationally expensive to identify.

In this paper, we propose an efficient strategy for identifying these misclassified data. The key
insight is that the symbolic labels – such as the color names or the objects being recognized – contain
semantic information that could be leveraged to predict how a data point may be misclassified. The
agent can then use this heuristic to identify such data and reclassify them as necessary. This strategy
is general in that it works with high-dimensional data in multiple modalities and with different
classifiers, and can take advantage of heuristics unrelated to the classifier. Furthermore, this strategy
lets the agent dynamically trade off between accuracy (identifying all misclassified data points)
and computational expense (the amount of data to search through). The strategy can therefore be
embedded within a cognitive architecture as a generic procedure for memory search that builds on
top of the architectural memory mechanisms.

The remaining pages elaborate on these ideas and make three main contributions:

• Formalizing the problem of knowledge obsolescence due to incremental learning;

• Defining and evaluating heuristic strategies for identifying misclassified data points; and

• Implementing such a strategy in a cognitive architecture and showing that it out-performs the
naive approach.

Since we are specifically focusing on how incrementally trained machine learning techniques
may lead to knowledge obsolescence, the next two sections describe our problem formulation and
approach in machine learning terms. We then present three experiments in Section 4 to show that,
across visual and textual data, meaningful semantic information can be found in the labels to guide
the identification of misclassified data. In Section 5, we return to the integration with architec-
tural memory mechanisms by implementing our strategy in a Soar agent in a domain that supports
interactive task learning. We conclude with a discussion of related work and open questions.

2. Defining Knowledge Obsolescence

While many types of knowledge obsolescence exist, we focus here on the interaction between sta-
tistical classifiers and the symbolic memory systems of a cognitive architecture. The classifiers of a
long-lived agent are likely to be fine tuned over time, whether that is from additional training data
or from instruction. This paper is specifically interested in how the symbolic output of a classi-
fier, stored in memory, may become incorrect as the classifier is updated. When the classifier has
changed, the same input may now produce different output that does not match the stored symbol,
rendering that piece of knowledge obsolete.

Formally, a classifier can be defined as a function C : X → Y that takes data as the input
and returns a symbolic label as the output. As an example, the domain X of a classifier could be
stimulus from the agent’s perceptual system, such as raw color data from a camera, with the range
Y being a color name. Note that this definition does not depend on the specific type of the input or
of the label, nor does it specify the classification method; this makes it amendable to other problems
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Figure 1. Illustration of knowledge obsolescence as the number of output labels of the classifier is increased
from 3, to 4, to 11. The incoming RGB data are in white, with misclassified instances marked with an X.

such as object recognition and text categorization. Section 4 will show that the same framework
applies to different classifiers on different types of input.

We define knowledge obsolescence as when learning occurs and the classifier is replaced by a
new classifier C+ : X → Y+ ⊃ Y , such that there exists inputs x ∈ X for which C(x) ̸= C+(x).
Since C and C+ have the same domain but the range Y+ is a superset of Y , there must necessarily
be inputs whose labels have changed between the two classifiers. If these inputs and its old label
are stored in the long-term memory of an agent, that stored knowledge will become inaccurate and
obsolete, leading to difficulties for retrieval.

As a concrete running example, consider an interactive robot that obtains RGB information
about an object from its camera, and must then associate a color name to identify the object to its
human collaborators. During its operation, the agent encounters many objects, applies the classifier
to determine its color, and stores that information in symbolic memory. While the agent may initially
only start with basic colors such as BLUE and GREEN as in Figure 1a, over time it might learn more
nuanced labels such as TEAL, and update its classifier to output these new labels as in Figure 1b.
Especially in an interactive setting, human collaborators and instructors may use these more-specific
labels in communication, and in turn expect the agent to use them in its responses. Objects that were
encountered before this learning occurred, however, would still be labeled BLUE, when the updated
classifier labels them as TEAL. The agent may therefore fail to identify the TEAL object that its
human collaborators are referring to, while consistently mis-communicating on which object it may
require assistance.

To constrain the knowledge obsolescence problem, we consider three ways in which the classi-
fier may be updated. First, the agent could accumulate additional training data, which could be used
to further train the classifier. Since this would shift the decision boundaries, inputs that are near
those boundaries could result in different labels. In the running example, the agent might be told
that an RGB value on the BLUE/GREEN boundary is in fact BLUE; this would cause nearby inputs
to also be labeled BLUE, even if they were previously labeled GREEN.

Second, the agent could learn additional labels that the classifier must output, as suggested in the
running example with TEAL. Initially, the agent may only know of the labels RED, GREEN, BLUE
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as in Figure 1a. The decision boundary is show in black, with the stored data points represented
as white squares. The agent is then introduced to the label TEAL, leading to a new classifier with
decision boundaries as depicted in Figure 1b. The stored data points are not reclassified, however,
and as a result, a subset of the data points remain labeled as BLUE and GREEN, even though they
should now be classified as TEAL; these data points are marked with an X. As the agent learns more
new labels as depicted in Figure 1c, a larger portion of data points will be misclassified.

The third and final way in which agent learning could influence a classifier is the removal of
labels. One can imagine a LIGHT-BLUE label no longer being relevant, and thus excised from the
classifier. Although this is a potential consequence of agent learning, we consider it less likely than
the first two scenarios. This paper focuses specifically on the second case, the monotonic increase
in the range of labels, although our approach will also apply to the first case of shifting decision
boundaries.

3. A Heuristic Approach

The problem of identifying misclassified data is challenging for several reasons. First, there may not
be additional information about the data outside of the its existing label, providing little information
to work with. Second, the number of data points may be large, especially if they are the accumulated
percepts from a long-living agent. The naive approach of re-classifying all data points in the agent’s
memory is computationally expensive, especially as the majority of data points may not be misclas-
sified. Finally, a task may not require the agent to identify all misclassified data points. Instead, the
agent may choose to trade off label accuracy for reducing the computational resources needed. We
are therefore interested in the problem of efficiently identifying these misclassified data points in a
way that allows for this tradeoff. Specifically, given a new label y+ ∈ Y+, we would like to find as
many misclassified data points by re-applying the classifier to as few data points as necessary.

Within the minimal framework we defined, the agent only has three pieces of information: the
old labels that have been in use, the new labels that have been learned, and the stored data points
and their potentially incorrect labels. Given no other knowledge, the only information that could
inform which data points are misclassified are the labels themselves. That is, given a new label,
the goal is to determine which old label is most likely to contain misclassifications, then apply the
new classifier to data points with those labels. This process can then be repeated for the remaining
old labels, in essence ranking the old labels by decreasing number of misclassified data points.
This would ensure that the most misclassified data points are identified while only reclassifying the
fewest data points overall.

Formally, the false negatives of a new label y+ ∈ Y+ are the data points which should have
new label y+ under the new classifier C+, but are instead stored as a different label under the old
classifier C. We can defined an oracle function my+(y) that gives the number data points that have
old label y but should have new label y+:

my+(y) = |{x : C(x) = y ̸= C+(x) = y+}|

To identify all false negatives of y+, the optimal order is to process data points by their old
labels in decreasing order by my+ . We define this optimal ground-truth ranking as a function σy+ :
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Y → N+ that takes an old label y and outputs its rank (a positive integer), where rank 1 is the
old label with the most misclassified data points, and should therefore be reclassified first. A label
should have a lower rank if and only if it has more misclassified points:

σy+(yi) < σy+(yj) ⇐⇒ my+(yi) > my+(yj) ∀yi, yj ∈ Y

Since the ground-truth misclassifications are not known to the agent, it is not possible to directly
calculate this ranking. However, this lets us formulate the misclassification identification problem
as one of approximating σy+ with σ̂y+ . Note that this is an approximation of the rank of each old
label (with respect to a new label), and not the number of misclassified data points with that label.
This not only reduces the space of approximations to permutations of Y , but also decouples the
approximation from the details of the classifier. This avoids the challenging task of determining
how classifier parameters might influence the misclassification of data points.

The key insight of this paper is that the symbolic labels often contain semantic information that
can serve as a heuristic for the rank. In particular, we hypothesize that the number of y+ data points
misclassified as y is inversely proportional to some distance metric d on the labels y+ and y. This
distance metric then allows us to define σ̂y+(y) ∝ 1/d(y+, y).

As a concrete example, consider the new label TEAL in the color naming classifier depicted in
Figure 1b. Although we cannot immediately determine which data points would belong in this new
label, we know that TEAL is more similar to BLUE (or GREEN) than it is to RED. Or, conversely, the
distance between TEAL and RED is larger than the distance between TEAL and BLUE. An approx-
imate ranking of the old labels would reclassify all BLUE data points first, and only process RED

data points if warranted by the task and justified by the computational cost. The heuristic strategy
therefore enables the agent to prioritize data points that are likely to be misclassified, allowing for
more efficient and accurate retrieval from memory.

4. Modality Experiments

In this section, we examine whether such a distance function can be defined in three different do-
mains: color naming, object recognition, and text classification. Although these experiments are not
within the context of an agent and its memory systems, they let us evaluate the broad applicability
of our approach. Once the effectiveness of the heuristics are established, we show that it can be
integrated into a cognitive architecture in Section 5.

Each experiment uses a different classification method on different types of data. The goal of
these experiments is to demonstrate that, in all three cases, an appropriate distance function can be
defined and that it can be used to efficiently identify misclassified data points. Additionally, we are
interested in the performance of this approach under two conditions. First, since the computational
expense comes from potentially large amounts of data, we are interested in whether this heuristic
scales to large data sets. Similarly, as an agent gains experience, it will likely already have many
labels on existing data; an ideal heuristic would also scale to many labels. Second, we are interested
in whether the performance of this heuristic changes depending on the accuracy of the original
classifier. Since less accurate classifiers have more misclassified data points, even before new labels
are introduced, the inaccuracy may carry over to heuristic and decrease its accuracy in turn.
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Table 1. An example approach compared to the random and the optimal ranking. This heuristic ranking has
a mean scaled regret of 0.07.

Heuristic Ground-truth Misclassified Cum. %
Rank Rank Points Found

1 1 180 87.80
2 3 2 88.78
3 3 2 89.76
3 4 1 90.24
4 2 20 100.00
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Figure 2. An example approach compared to the random and the optimal ranking. This heuristic ranking has
a mean scaled regret of 0.07.

We use the same methodology in all three experiments. Given a labeled data set in the domain,
a subset of the labels is chosen and is used to train a classifier. The classifier is then presented with
the complete data set, including data whose labels were omitted from the training. For each of the
unused labels, a heuristic is then used to rank the old labels. This method of training the initial
classifier with only a subset of the labels ensures that some data will be misclassified, and that the
number of new and old labels can be varied.

4.1 Regret as the Evaluation Metric

We are primarily interested in the efficiency of our approach in identifying misclassified data points,
by finding as much obsolete data in as few re-classifications as possible. Figure 2 graphically depicts
this objective with demonstration data. The x-axis shows the percentage of data points searched,
while the y-axis shows the percentage of misclassified data points found. An efficient strategy would
find a large proportion of misclassified data points while only searching a small proportion of data
points, leading to a line towards the upper-left corner of the plot.
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In addition to the performance of the heuristic strategy (solid line), Figure 2 also depicts two
baselines. The topmost, dashed line is the ground-truth oracle, which corresponds to σy+, and is the
best possible ranking of old labels. Note that contrary to expectation, the “best” result is generally
not a step function that jumps immediately to 100%, where the agent only applies the classifier to
the misclassified data points. Such a result would only be possible if all misclassified data points
were in the same existing label, when in most cases they would be more distributed, such as how
TEAL data points are incorrectly classified as both BLUE and GREEN. The bottommost, dotted line
represents the brute-force or random strategy, which uses an arbitrary permutation of the old labels
as the ranking. On average, the random strategy will find misclassified points in proportion to the
percentage of points searched. Together, these two baselines provide the upper and lower bound for
measuring our heuristics.

We quantify the performance of a heuristic ranking by measuring its regret. Geometrically, this
regret is equivalent to the area between the heuristic strategy and the ground-truth, shown shaded
in Figure 2. In the simple case, we can calculate regret between two total orderings using the
generalized Kendall’s tau metric with element weights (Kumar & Vassilvitskii, 2010). This regret
is given by

r(σ̂y+) =
∑

σy+ (yi)<σy+ (yj)

{ my+(yi)−my+(yj), if σ̂y+(yi) > σ̂y+(yj)
0, otherwise

given the two orderings σy+ and σ̂y+ , Kendall’s tau considers every pair of ranks in σy+ . If the
other ordering has that pair in reverse, a penalty of the difference in misclassifications is added.
Intuitively, this metric measures the number of inversions of the heuristic ranking compared to the
ground-truth ranking, weighted by the difference in the number of misclassifications. This captures
the intuition that the more misranked a label is, the longer before its misclassified data points will
be identified.

Kendall’s tau only applies to totally-ordered rankings. In reality, however, both the ground-truth
and heuristic rankings are bucket orders (Fagin et al., 2006), where each “bucket” contains items of
the same rank, and there is a total ordering between buckets. Unlike general partial orderings, all
items in a bucket order can be compared, with items in the same “bucket” having no preference for
ordering. For the ground-truth ranking, a bucket indicates that two labels contain the same number
of misclassified data points (my+(yi) = my+(yj)), and there is no difference as to which label
should be reclassified first. For the heuristic ranking, a bucket indicates that two existing labels are
equidistant from a new label (d(y+, yi) = d(y+, yj)).

Figure 2 is therefore a simplification – as shown in Table 1, there are in fact two old labels with
the same heuristic rank, and two other labels with the same number of misclassified data points
(and thus the same ground-truth rank). An accurate Figure 2 should instead have two lines for the
heuristic and two lines for the ground truth, which combinatorially leads to four different regret
values that must be averaged. Although it is possible to calculate an average Kendall’s tau for all
total orderings of the ground-truth and heuristic rankings, this is computationally intractable, with
a worst case of n! total orderings. Instead, we take advantage of the bucket order to decompose this
computation into the sum of inter- and intra-bucket components, both of which have n2 complexity.
Each component of the computation is given in Figure 2.
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Table 2. Regret between Bucket Orders

procedure INTRABUCKETREGRET(bckt)
regret← 0
for yi, yj in bckt do

if my+
(yi) ̸= my+

(yj) then
addend← abs(my+(yi)−my+(yj))
regret← regret+ addend

return regret/2

procedure INTERBUCKETREGRET(bckt1, bckt2)
regret← 0
for yi in bckt1 do

for yj in bckt2 do
if my+(yi) > my+(yj) then

addend← my+(yi)−my+(yj)
regret← regret+ addend

return regret

Since the performance of the ground-truth strategy depends on the classifier and the data set,
we scale regret to [0, 1] to allow for comparison between experiments. The scaling factor used
is the maximal regret possible for a classifier and data set, which corresponds to the regret of the
reverse ground-truth ranking. The symmetry of this definition means that the random strategy will
always have a scaled regret of 0.5. Finally, because regret is calculated per new label, the regret
of a heuristic is the average regret for all new labels, r(σ̂) = 1

|Y+|
∑

y+∈(Y+−Y ) r(σ̂y+). All three
experiments below use the mean scaled regret as the metric for performance.

4.2 Color Domain

This section describes our first experiment, an implementation of the running example of color
naming. We chose color was chosen as the domain for several reasons. First, the classifier and
the resulting boundaries are relatively simple, providing intuition for why the heuristic approach to
identifying misclassification works. Second, it presents an example where the heuristic is a mea-
surement directly used by the classifier, and thus is a best case scenario for our approach. Finally,
due to the domain’s simplicity, it is easy to generate synthetic data and to scale the number of new
and old labels used by the classifier. This lets us explore the effects of data size and the number of
labels on performance.

In a color naming task, the goal is to convert an RGB value (three integers between 0 and 255,
inclusive) into an English color name. For this experiment, we use a nearest-centroid classifier,
with the centroids obtained from the results of an online survey (Munroe, 2010), where respondents
were asked to name a particular RGB color. This ensures that the color labels accurately represent
human perception and is therefore representative of what might be used in cognitive robotics. We
extracted the top 200 color names from the survey, each of which were used over 1,000 times by
respondents; the centroid of the cluster corresponding to a color name is defined by the mean RGB
values. The nearest centroid algorithm partitions the RGB space into Voronoi cells, such that for any
RGB value, its label is the closest centroid by Euclidean distance. Figure 1 shows a 2D projection
of this classifier. We assume that the agent has access to the centroids and simply use the Euclidean
distance between centroids as the heuristic distance between labels. Since this directly corresponds
to how the classifier assigns labels, we expect it to be accurate in identifying misclassified points.

Each trial in this experiment is parameterized by the number of data points, the number of old
labels |Y |, and the number of new labels |Y+| − |Y |; the last two parameters indirectly control
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Figure 3. Heuristic regret as the number of (a) old and (b) new labels increase, denoted as “old + new”. The
x-axis is in log scale. Lower scores on the y-axis indicates better performance.

the total number of labels. To reflect more common color names being learned first, the labels are
chosen from the most popular color names. The lower-level data were uniformly randomly drawn
from the RGB space. The results described below are the average of 25 runs for each trial. Note
that this experiments adds multiple new labels at the same time, which may be unrealistic for real
agents, where such labels may be acquired incrementally and added separately. Nonetheless, learn-
ing multiple new labels simultaneously through instruction is not implausible, and this experiment
allows us to characterize its effects.

4.3 Color Domain Results

As expected, because the heuristic ranking is closely related to the classifier, the regret is generally
extremely low. The regret values were below 0.05 for all trials, significantly lower than the regret of
0.5 for a random strategy. Figure 3 shows the regret for different number of precepts and different
number of old labels, shown in Figure 3a, and new labels, shown in Figure 3b. The x-axis of both
plots show the number of data points from 103 to 106, on a log scale; the y-axis shows the mean
scaled regret. As the number of data points increase (along the x-axis), the regret decreases for
all parameter settings. This is in part a result of the distribution of data points: as the number
of data points increase, it is more likely that data points will exist in the space where labels have
changed. The number of misclassifications would correspond with the size of the space, which is in
turn inversely correlated with the distance between centroids. The number of data points therefore
increases the accuracy with which the heuristic predicts the ground-truth ranking.

Focusing on the effects of increasing the number of old labels as shown in Figure 3a, we see that
as the number of old labels increase (indicated by different trend lines), the regret tends to decrease.
Two separate phenomena contribute to this trend. First, as the number of existing labels increase,
the changes in decisions boundaries caused by the addition of new labels are smaller. Compare the
size of the TEAL in Figure 1b to that in Figure 1c: the smaller differences in decisions boundaries
means that there will be fewer misclassified data points, which are distributed over fewer existing
labels. Additionally, the other existing labels also occupy smaller regions. When these labels are
ranked by the heuristic, they in effect become a “higher-resolution” features of the space, allowing
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the heuristic to more accurately specify where misclassified data points might be. Together, these
two effects lead to decreased regret as the number of existing labels increase.

Conversely, as the number of new labels increase as in Figure 3b, the regret tends to increase,
although the effect is inconsistent. This is consistent with the intuition that the more the classifier is
changed, the less information previous labels can provide. Specifically, as more labels are learned,
the boundaries of the new labels interact with each other, causing the data points to no longer
correspond to their previous labels. This effect can be seen with the BROWN data points in Figure
1c – although the label is closest to RED, its region is also shaped by the ORANGE, MAGENTA, and
PURPLE labels, causing it to include space that was originally labeled GREEN. These interactions
between labels decrease the accuracy of the heuristic, leading to higher regret.

To summarize this experiment, using the Euclidean distance between centroids in RGB color
space as a heuristic, we were able to accurately rank the old labels in which data points may be
misclassified. The regret of our approach decreases with more data points and more existing labels,
but increases with more new labels. Although these results are encouraging, the color domain is
relatively simple. The choice of classifier, closest-centroid, is intimately related to the distance
between centroids, making it obvious that the rank of labels will correspond to the rank of false
negatives.

4.4 Image Domain

This second experiment evaluates the performance of the heuristic approach in the context of a more
sophisticated machine learning method, namely, a convolutional neural network image classifier.
Image recognition is not a task for which symbolic cognitive systems are traditionally well suited;
the integration with a neural network may therefore be beneficial for certain tasks, such as cognitive
robotics. Neural networks present two additional challenges beyond that of the nearest centroid
classifier. First, the decision boundaries of a neural network are difficult to characterize and less
amendable to analysis, with no obvious distance metric between labels. Second, neural networks
also introduce the problem of classifier accuracy, which may impact correlation with the heuristic.
This experiment focuses on the exploration of these two issues.

For this experiment, we use the CIFAR-10 data set, which contains 60,000 images split equally
between ten labels, including vehicles, mammals, and other animals (Krizhevsky, 2009). Each
image is 32x32 pixels in full color, meaning that it is represented as three 32x32 matrices for each
of the red, green, and blue channels, for a total of 3,072 features. Since we are not striving for
the highest possible accuracy, we use an off-the-shelf network architecture1 from the Keras library
and the TensorFlow back end (Chollet et al., 2015; Abadi et al., 2015). The classifier is an eight-
layer convolutional neural network, having four convolutional layers with rectified linear (ReLU)
activation, two max-pooling layers, and two fully-connected layers, using softmax for this multi-
class domain and dropout for regularization.

As with the previous experiment, we only trained the network on a subset of labels. In each trial
of this experiment, three labels are used to train a neural network; we took all combinations of three
labels to create

(
10
3

)
= 120 trials. Each network is therefore trained on 15,000 images, 5,000 images

1. https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py
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Figure 4. Regret vs. classifier accuracy for CIFAR-10 images. Here r2 is 0.362.

from each label, in batches of 32 images, for 200 epochs; the data are augmented with random
translations and horizontal reflections. An additional 1,000 images from each class is used as the
validation set; the accuracy from this validation set is used below the characterize the performance
of the heuristic. To simulate agent learning, we asked the network to classify 1,000 images from
each of the seven unused labels. Unlike the color domain, each label is used independently from the
others; this is equivalent to an agent learning a fourth label after being trained on the first three. No
additional training of the network is done with this new label.

The complexity and opacity of neural networks makes it difficult to extract a useful distance
metric between labels to serve as the heuristic. Instead, we used an external source: the UMBEL
ontology, a subset of the OpenCyc knowledge base (Bergman & Giasson, 2016; Lenat, 1995). The
ontology contains 34,000 concepts, out of which we identified the equivalent concepts for the ten
labels. To create a distance metric, we extracted an undirected subgraph using the subClassOf
relation, and used the shortest graph distance between pairs of labels as the heuristic. Although
UMBEL includes some taxonomic relations such as species and genus, this is often not part of the
shortest path between labels. For example, Dog is not only a subclass of CanisGenus, but also of
DomesticatedAnimal, a category that also includes Horse. DOG and HORSE therefore have a
distance of two, which is shorter than their taxonomic distance. In general, the UMBEL distances do
not correspond to evolutionary history, nor to any other formal metric. The categories and distances
for vehicles are similarly non-standard.

4.5 Image Domain Results

Across all combinations of three old labels from CIFAR-10, the mean regret for all new labels
is 0.188, with a standard deviation of 0.146. This is lower than the regret of 0.5 for the random
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strategy, suggesting that the UMBEL graph distance heuristic is effective and efficient at identifying
misclassified data points despite being completely unrelated to the data and the classifier.

We are additionally interested in the performance of the heuristic as a function of classifier
accuracy. Figure 4 plots the regret for each of the 120 classifiers on the y-axis, against the validation
accuracy for the three old labels for that classifier on the x-axis. The plot shows a clear relationship
between the accuracy of the classifier and the regret of this heuristic: the more accurate the classifier,
the lower the regret. This is not surprising, as an inaccurate classifier would lead to data points
being misclassified in the first place, and therefore bear no relation to the new label. As a concrete
example, consider the results from Figure 1 if GREEN was (incorrectly) determined to at be the top of
the image, without affecting its ranking with respect to TEAL. The TEAL data points in the bottom-
right would instead have been misclassified as BLUE, meaning that although GREEN remains ranked
first by the heuristic, it no longer contains misclassified data points, and prioritizing GREEN would
lead to higher regret. The accuracy of the classifier therefore has a large effect on performance of a
heuristic, even if the heuristic is otherwise accurate.

It is worth exploring why ontology graph distance would accurately predict misclassifications.
Although the UMBEL ontology has no explicit relationship with the neural network classifier, there
is an implicit relationship in the data. The ontology encodes evolutionary and functional character-
istics of objects, such as the fact that both dogs and deers are mammals, or that both automobiles
and trucks are land vehicles. Objects with similar characteristics are placed close to each other in
the ontology and would therefore have a short graph distance. At the same time, these functional
characteristics are also indirectly expressed in images of objects, for example by having common
backgrounds (e.g., roads) or common features (e.g., legs), making it more likely that the neural net-
work will confuse dogs with deers than with birds. That is, images of objects with similar functional
characteristics will tend to be more similar than images of objects that do not share such character-
istics. As a result, the graph distance in an ontology can serve as a heuristic for how likely images
will be misclassified.

In summary, using semantic heuristics for identifying misclassified points works even when the
data are high dimensional and the classifier is an opaque neural network. However, the accuracy of
the classifier plays a large role in the performance of the heuristic.

4.6 Text Domain

The final experiment in this section moves from visual to textual data. For this experiment, we
use the newsgroup data set from scikit-learn (Pedregosa et al., 2011). The data set contains 18,000
Usenet newsgroup posts on 20 different topics, which also serve as the labels. Given the text of
a particular post, the goal of this task is to identify the originating group of the text. As with the
image experiment, we used an existing classification pipeline for this task.2 The pipeline consisted
of three steps, which first converts each post into a vector of word counts, then performs TFIDF
(Term Frequency / Inverse Document Frequency) to extract features, before finally applying a linear
classifier. To set the parameters of these individual steps, such as the tolerance and the learning rate
of the linear classifier, we used the best parameter set from a grid search on the 20-class classifier.

2. https://scikit-learn.org/stable/auto_examples/model_selection/grid_search_
text_feature_extraction.html
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To obtain a heuristic for the newsgroup labels, we took advantage of the newsgroup hierar-
chy itself. Since labels such as comp.sys.ibm.pc.hardware represent paths, we can de-
fine a distance function using the tree distance between two labels. For example, even though
comp.sys.ibm.pc.hardware and comp.sys.mac.hardware share the final component
of their paths (hardware), they would still have a distance of five because of the tree-structured
hierarchy.

4.7 Text Domain Results

As with the neural network experiment, we trained classifiers on all combinations of three labels,
for a total of

(
20
3

)
= 1, 140 trials. Across these trials, the mean regret for all new labels was 0.26,

with a standard deviation of 0.10; again, this is below the regret of 0.5 from a random strategy. The
success of this heuristic is likely due to the name of each newsgroup having a strong correlation with
the words that are used in the posts. Newsgroups under comp.sys.* will share common words
about computers, unlike other groups such as soc.religion.christian. Using TFIDF as
a feature ensures that the most unique words for each post are identified, and the linear classifier
allows shared weights for words that are indicative of a label. The tree distance on these labels
therefore serve as an acceptable approximation of the misclassification rankings.

5. Memory Strategy Experiment

The previous section provided evidence that, across different types of data, the symbolic labels often
contain semantic information that can be used to mitigate the problem of knowledge obsolescence.
All three experiments were done outside the agent context, however, and so they did not address
how this strategy can be integrated into a cognitive architecture, which was our original goal. In
response, we performed another experiment to address the omission.

In this experiment, we implemented the heuristic strategy in the Soar cognitive architecture
(Laird, 2012). Although the strategy should be viable in all architectures that implement the standard
model of the mind (Laird et al., 2017), we chose to implement the strategy in Soar. We are interested
in the question of how this heuristic strategy interacts with the architectural long-term memory
mechanisms, especially give the space in which such mechanisms might differ. Soar is a compelling
architecture for this experiment because it contains separate semantic and episodic memory systems,
which have different mechanisms for retrieval. As the results show, these differences alter the
baseline performance of the agent.

To provide fidelity, we applied the strategy to an existing interactive tabletop robotics task, in
which a Soar agent controls a robotic arm on a table, on top of which are foam blocks of different
sizes, colors, and shapes (Mohan et al., 2012). The agent is equipped with a Kinect camera, which
provides both color and depth data. This low-level data are sent to three classifiers that provides
labels for the size, color, and shape of objects, such as a large red triangle; we focus only on the size
and color labels in this experiment. Since objects can be occluded, the agent must store the location
and description of objects in long-term memory. The interactive nature of the task comes from the
agent interacting with a human instructor, who can teach the agent about new colors and sizes. For
example, the instructor might select a block and tell the agent “this is an orange rectangle”; this
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would then be used as a training data point for the color classifier. Additionally, the instructor can
also ask the agent to identify and interact with blocks through their descriptions, with instructions
such as “pick up the large red triangle.”

5.1 Declarative Memories in Soar

The Soar architecture, on which this agent is built, two long-term declarative memories. In general,
these architectural components are for storing factual information about the world and the agent.
In Soar, the semantic and episodic memories serve different roles and are accessed by the agent in
different ways. Semantic memory contains facts about the world and requires deliberation by the
agent for knowledge to be stored. In the tabletop robotics task, it contains linguistic knowledge,
such as that the word “red” is a color. To retrieve knowledge from semantic memory, the agent
must create a cue describing the desired features of the piece of information. For example, if the
agent was looking for the ID of a block, the agent would query semantic memory for objects have
the color red and is triangularly shaped. Semantic memory would find such an object and return all
its associated attributes. Importantly, semantic memory only returns objects that exactly match all
attributes cues, or fails if no such object exists.

In contrast, episodic memory contains the contextualized experiences of the agent, with the
understanding that it may not be able to determine what information may be useful in situ. Episodic
memory storage therefore occurs automatically and periodically, without deliberation by the agent,
and captures the entire agent state. As with semantic memory, retrieval requires the agent to create
a cue, but if no complete matches exist, episodic memory will return episodes that only partially
match the cue. For example, a query for “large red triangles” might return an episode where a
large red rectangle was present instead. This partial matching is done at a symbolic level, with
“large,” “red,” and “triangle” each being weighed equally. Episodic memory does not contain any
additional heuristics about the similarity between “red” and “orange”, so “large blue triangle,” “tiny
red triangle,” and “large red hexagon” are all equally valid as partial matches to “large red triangle.”

5.2 Task Description

To show how misclassification heuristics complement the existing memory mechanisms of Soar, we
created an agent that stores the size and color of blocks, as indicated by the instructor. Since the
robotics component is outside the scope of this paper, the environment is entirely simulated. Each
trial consists of a presentation phase, followed by the quiz phase. During presentation, the instructor
presents a new block to the agent at every time step, and teaches the agent the correct size and color
labels for that block. After 20 blocks are presented to the agent, the instructor asks the agent to
identify the block with a specific size, color, and shape. The agent then proposes different blocks as
the answer, until the instructor indicates that the agent is correct.

In this task, knowledge obsolescence occurs because the both the size and color classifiers are
being trained as the instructor presents blocks. These two classifiers change in different ways. As
with the previous color experiment, colors are labeled with a nearest centroid classifier and are
drawn uniform randomly from RGB space. During presentation, only five colors labels are used;
however, the quiz phases uses two additional color labels, meaning that some objects may now
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be classified differently. The size labels, on the other hand, are scaled to the smallest and largest
diameters of the blocks the agent has seen thus far and are drawn from a Gaussian distribution. What
was a “gigantic”’ block at the beginning may therefore later be classified as merely “large” when
other, bigger blocks are seen. Due to these incremental changes in the classifier, the description of
the block for which the instructor asked may not match any block stored in memory.

5.3 Agent Description

To compare the different strategies for identifying misclassified data points, we implemented agents
that used different strategies for the robotics task. No architectural modifications were necessary, as
the strategies merely differ on how and when the long-term memory systems are used. To explore
the interaction between retrieval strategy and memory mechanism, we parameterized the agents by
both the memory system used and by the strategy for identifying the desired block. We implemented
three distinct strategies:

• Attempting only a retrieval with the exact labels. Note that the results depend on the memory
used; while semantic memory will attempt to find blocks with those labels and fail otherwise,
episodic memory will employ partial matching to return other potential blocks.

• Exhaustively enumerating the contents of memory. For semantic memory, this enumeration
is dependent on base-level activation and spreading; for episodic memory, this enumeration
occurs in reverse chronological order.

• Using the heuristic to find nearby labels, then querying for objects that match those labels
exactly. For both sizes and colors, the rank of each label for every other label is loaded into
semantic memory. If the agent is asked to identify a “large red triangle”, it will retrieve the
labels semantically close to “large” and “red”, and query for objects with those labels in turn.
The sum of the ranks is used as the retrieval order, so the agent would query for “huge red
triangle” and “large orange triangle” first before querying for “huge orange triangle”. Since
this heuristic contains more information than the partial matching in episodic memory, only
complete matches from episodic memory are used.

The exact and exhaustive strategies serve as baselines for comparison. The exact strategy is
representative of an agent that assumes no uncertainty or error in its memory systems and in the
query by the instructor: either an object of that exact description is found or there is no object that
could be the desired result of the query. The exhaustive strategy, on the other hand, is representative
of the naive approach memory search, namely, to try everything until it succeeds. This is equivalent
to the brute-force/random strategy in Figure 2, with no additional knowledge of the domain. Note
that both the exhaustive and heuristic strategies are guaranteed to find the correct block, since all
objects are eventually enumerated.

For our performance metrics, we recorded both the number of objects the agent correctly iden-
tifies, as well as the number of guesses needed.

15



J. LI

Table 3. Results from implementing heuristic search in Soar.

Memory Strategy One Label Differs (n = 778) Both Labels Differ (n = 222)
% Correct Mean Guesses (std.) % Correct Mean Guesses (std.)

Semantic Exact 0% - 0% -
Exhaustive 100% 12.59 (5.92) 100% 15.38 (4.40)
Heuristic 100% 4.69 (4.64) 100% 7.25 (5.36)

Episodic Exact 48.8% 1 (0.00) 1.4% 1 (0.00)
Exhaustive 100% 8.85 (8.32) 100% 16.27 (4.65)
Heuristic 100% 4.69 (4.64) 100% 7.25 (5.36)

5.4 Experimental Results

Table 3 presents the results from 1,000 agents with each memory and strategy, further separated by
whether one or both of the size and color labels are incorrectly labeled.

In general, using label heuristics to search memory leads to fewer guesses than exhaustively
enumerating all possibilities. The results for the heuristic strategy is the same for both the two
memory systems, since the agent does not take advantage of the partial matching mechanism. For
the exact match strategy, the different guesses required by the two memory systems illustrate how
architectural mechanisms interact with the results of learning. Although semantic memory fails
in cases where one or both labels differ, episodic memory has some success with the single-label
case, correctly identifying the block in a single attempt in 49% of cases. This is due to the partial
matching mechanism – even if one label is obsolete, partial matching could return an object that
matches the other label, coincidentally selecting the correct object. Much of this success is due to
chance, however, and as more potentially-incorrect cues are added, the ability for episodic memory
to cope with obsolete knowledge decreases.

In summary, this experiment showed that the heuristic strategy presented in this paper can be im-
plemented in Soar without needing architectural modifications. The strategy requires fewer memory
retrievals to identify the object requested by the instructor, but the amount of relative improvement
depends on the degree to which the memory mechanisms allow for uncertainty in the query terms.

6. Related Work

In general, the problem of knowledge obsolescence and identifying misclassification has not been
well studied. Mainstream statistical machine learning operates in a framework where all labels are
available during training; reclassification would imply training a completely new classifier over the
new data set and labels. Where learning is incremental, the additional input to the algorithm is
often in training data and not in new labels. The closest prior work on reclassification by Sierra
& Corbacho (2000) treats detecting misclassification as a clustering problem. Standard clustering
metrics can be used to detect previously unknown clusters that then serve as new labels, implicitly
identifying those data points as misclassified. However, this approach does not leverage external
knowledge, and further does not let agents to trade off label accuracy with computational cost due
to requiring the complete data set for clustering.
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While the literature on reclassification is sparse, the use of symbolic taxonomies for classifica-
tion is not new. For example, the confusion matrix for a large multi-class (10,000+) image classifier
contains block-diagonal structures that roughly align with whether the image is of an object or an
animal (Deng et al., 2010). Further submatrices show correlation with the structure of WordNet
(Miller, 1995), suggesting that it and other semantic networks may provide meaningful information
for efficient classification or reclassification. This is suggested by the how ImageNet provides not
only the label for its images, but also a taxonomy of those labels based on WordNet (Deng et al.,
2009). Prior work on clustering have also used distance metrics created using information retrieval
techniques, for example using the similarity between Google results of two terms, or using object
concurrence in Flickr images (Wu et al., 2008). To the best of our knowledge, neither taxonomies
nor distance metrics have been applied to the problem of reclassification.

For the cognitive systems and cognitive architecture communities, this work builds on prior
results for memory mechanisms and memory strategies. Although it is well known that human
memory retrieval is strategic and involves multiple processes (Burgess & Shallice, 1996), no such
general set of strategies have been developed for cognitive architectures. Even where large knowl-
edge bases are used, the approach has mostly remained at the level of translating a question into
terms for an exact match, while allowing for mechanisms such as partial match and spreading ac-
tivation (Salvucci, 2015). In contrast, human memory retrieval often requires multiple sequential
queries, where the results of one retrieval is used to determine the next query. The heuristic strategy
proposed in this paper, where a retrieval from semantic memory determines the query for episodic
memory, follows this pattern. More generally, the possibility of knowledge obsolescence introduces
uncertainty into the memory retrieval that existing methods may not be able to fully mitigate (Li
et al., 2016). Using other sources of knowledge as heuristics may allow domain-specific efficien-
cies that an architectural mechanism cannot provide.

7. Discussion

In this paper, we proposed that agents can use additional semantic knowledge to identify misclassi-
fied data points to mitigate knowledge obsolescence from incremental knowledge acquisition. We
showed that effective heuristics exist in three different domains, and examined their performance
on a large data set and on lower-accuracy classifiers. Our experiment with the implementation of a
heuristic retrieval strategy in Soar has also shown that it out performs a brute force strategy, without
the need for new architectural memory mechanisms.

Several open questions remain, however, the foremost being how a heuristic might be found
for any particular domain. We acknowledge that it is unlikely that suitable heuristics exist for all
domains – while the ontology graph distance may correlate with misclassified images of dogs and
cars, we doubt that they can be used to identify audio recordings from the same objects. That said,
some general guidelines could be laid down. First, for certain classifiers such as nearest neighbors,
the labels/centroids may directly serve as the heuristic. Although the first experiment used color as
the domain, the heuristic did not use any external knowledge about color except for the RGB value
of the centroids. This suggests that the same approach can be applied to other settings, provided
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an appropriate distance function is used. We suspect the same can to applied to methods such as
Gaussian mixture models.

Less can be said with certainty regarding other domains and classifiers. Both the image and
text experiments used a tree distance, and we suspect that taxonomies and other semantic networks
will serve as useful heuristics, provided a causal link between the classification domain and the
method of organization. While this may appear to be a narrow claim, many domains of interest
have such taxonomies available. The evolutionary phylogenetic taxonomy, for example, is likely
to apply to many types of biological data, given the key role of evolution in biology. With the rise
of learned ontologies, such as hierarchical topic models (Griffiths et al., 2004), ontologies might
be used to identify misclassified data in newly trained classifiers. However, such heuristics are
also subject to idiosyncrasies. The newsgroup hierarchy has computer science (comp.*) as a top-
level branch, making it equivalent to the broad branch of alt.*, which would skew distances
between technology and (say) geographical topics. Ultimately, the effectiveness of a heuristic for
any particular domain can only be determined empirically

A separate set of open questions concern efficient memory retrieval. Architecture development
in the cognitive systems community has emphasized low-level memory mechanisms, but has thus far
ignored domain-independent patterns of memory use. Although this paper has focused on identify-
ing obsolete knowledge, the symbolic output of classifiers can be applied to other memory queries.
For example, a query for the closest visited location to a coordinate might use the county as a coarse
filter. Domains such as geography and color might also allow for a hierarchy of representations. A
geographical coordinate is part of a city and state as well as a country, and “baby blue” could be
described as both “light blue” and “blue”. Other structures that exists in the semantics of the data
could be exploited by agents for efficient memory retrieval. Future research should examine more
complex memory behavior that incorporates problem solving and reasoning into knowledge search.
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