
Spontaneous Retrieval from Long-Term Memory for a Cognitive Architecture

Justin Li and John Laird
University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121
{justinnh, laird}@umich.edu

Abstract

This paper presents the first functional evaluation of sponta-
neous, uncued retrieval from long-term memory in a cognitive
architecture. The key insight is that current deliberate cued
retrieval mechanisms require the agent to have knowledge of
when and what to retrieve — knowledge that may be missing
or incorrect. Spontaneous uncued retrieval eliminates these
requirements through automatic retrievals that use the agent’s
problem solving context as a heuristic for relevance, thus
supplementing deliberate cued retrieval. Using constraints
derived from this insight, we sketch the space of spontaneous
retrieval mechanisms and describe an implementation of
spontaneous retrieval in Soar together with an agent that takes
advantage of that mechanism. Empirical evidence is provided
in the Missing Link word-puzzle domain, where agents
using spontaneous retrieval out-perform agents without that
capability, leading us to conclude that spontaneous retrieval
can be a useful mechanism and is worth further exploration.

Introduction
In almost every cognitive architecture, there is a distinc-
tion between short-term (working) memory and long-term
declarative memory, and the mechanisms that transfer
knowledge between the two have been a topic of study since
cognitive architectures existed (Raaijmakers and Shiffrin
1981). Although many long-term memory mechanisms have
been explored, one remains curiously unexamined: that of
a mechanism which automatically (spontaneously) retrieves
knowledge from long-term memory to short-term memory.

This is surprising, as human involuntary memory has
been recognized since the first systematic studies of memory
(Ebbinghaus 1913), and has continued to receive attention
up to the present day (Kvavilashvili and Mandler 2004;
Hintzman 2011). Its utility for artificial agents, however,
has not been evaluated. This is likely due to the success
of deliberate retrievals, and agent designers’ preference for
mechanisms whose behavior they can specify precisely. The
inherent unpredictability of spontaneous retrievals, both in
when the retrieval occurs and in what memory is returned,
may make it difficult to design agents that can effectively use
such a mechanism without compromising task performance.
Furthermore, it is difficult to imagine the circumstances under

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which spontaneous retrieval would out-perform an agent with
top-down control of its memory.

This paper takes the first step in exploring how sponta-
neous retrieval can be effectively used in artificial agents. The
key insight is that deliberate retrieval has certain knowledge
requirements — namely the knowledge of when to search
memory and what to search for — that spontaneous retrieval
does not. We therefore hypothesize that spontaneous retrieval
could be well-suited for agents in domains where this
knowledge is unavailable or otherwise incorrect. This insight
is crucial in defining a space of possible spontaneous retrieval
mechanisms, as well as in deriving the design principles
necessary for an agent to take advantage of these retrievals.
Results from the Missing Link word puzzle support our
hypothesis, and further hint at the conditions under which
spontaneous retrieval can be beneficial.

Background: Memory Mechanisms in
Cognitive Architectures

The goal of cognitive architecture research is to explore
and understand the computational mechanisms that support
general intelligence. Although there are a number of cognitive
architectures in use, the majority share a similar core design;
here the focus is on ACT-R (Anderson 2007) and Soar (Laird
2012), two widely used architectures.

All knowledge is represented as an edge-labeled directed
graph in ACT-R and Soar. Working memory holds the
knowledge that is immediately relevant to the agent’s current
situation, while long-term memory contains other general
knowledge about the world; a single piece of knowledge in
either memory is called a memory element. Working memory
has specialized buffers that contain information about the
agent’s perception and motor output; an input-processing-
output step is called a decision cycle. These buffers may be
changed by procedural rules, which match on and modify
working memory.

In addition to input and output buffers, there are also
buffers for long-term memory access, where rules can initiate
retrievals. Such retrievals require that the agent create cues
that describe the desired features; long-term memory then
finds all memory elements that match the cue, and returns
a single element (a graph vertex together with all of its
outgoing edges) as determined by some bias. In ACT-R and



Soar, this bias is called activation, and is the sum of several
factors. One factor is an element’s base-level activation,
which decreases (decays) over time but increases (is boosted)
with every access (every retrieval or storage of the element).
Another factor is activation that has spread from neighboring
elements, allowing the bias to take the current context of
the agent into account. The higher the total activation, the
more likely an element is selected for retrieval (assuming it
matches the cue); the element is recreated in the long-term
memory buffer, where it can be matched on and modified by
rules. Similarly, the agent can also store a working memory
element into long-term memory through this buffer.

Long-term memory retrieval must be deliberately initiated:
the retrieval buffer never changes without some rule firing.
In contrast, a retrieval that is spontaneous would change
the buffer without action on the part of the agent; this is
known as buffer stuffing by the ACT-R community. One such
mechanism has been implemented in ACT-R’s declarative
memory, but has never been used. This is partially due to the
lack of documentation in the manual, and partially because
it is easier to create cognitive models that have top-down
control of memory retrievals (Lebiere 2014).

Outside of cognitive architecture research, the case-based
reasoning (CBR) community has also considered the problem
of when to search for relevant cases (Riesbeck and Schank
1989). The focus of that work, however, remains on a useful
definition of relevance, while ignoring when relevant cases
should be searched for; in fact, most CBR agents begin
by being given a case, for which spontaneity has no role
(Aamodt and Plaza 1994). Our work has similarities with
work on spontaneous analogies (Pickett and Aha 2013),
although “spontaneity” in that work is only vaguely defined
and focuses more on perceptual features. As a result, the
work reported here is the first application of a spontaneous
retrieval mechanism that we know of.

Theoretical Benefits of Spontaneous Retrieval
To design a spontaneous retrieval mechanism, it is necessary
to first consider the role it plays in an intelligent agent.
The goal of all long-term memory retrievals, deliberate or
spontaneous, is to find knowledge that is relevant to the
agent’s current task; in other words, it is a mechanism for
knowledge search (Newell 1990). This search is necessary
because knowledge in long-term memory may not always be
well organized and immediately accessible. This is especially
true for a long-lived agent that acquires knowledge during its
lifetime and must use that knowledge for multiple goals. In
this context, the cues created by the agent in a deliberate
retrieval provide heuristic guidance for what knowledge
might be relevant. Since the search is deliberate, however, the
agent’s rules dictate not only what to search for, but also when
to perform this search. This raises the question of how the
agent copes when it lacks this search-guidance knowledge,
or when the heuristics are incorrect. It would be beneficial to
have a mechanism that provides a more general heuristic that
is robust to the agent’s lack of search knowledge, even if it is
not as accurate as is possible with a deliberate cue.

Consider an agent in the real world, where it perceives
an abundance of objects every perceptual cycle. The agent

may have additional knowledge about many of these objects,
but for the majority of objects, this knowledge does not
immediately benefit the agent. Moreover, the agent may not
know which objects are important, and therefore cannot focus
its search on these objects, if any of the objects are important
at all. Without this search-guidance knowledge and with only
deliberate retrieval, the agent could only retrieve additional
information by brute force. Spontaneous retrieval could help
in this situation by using subsymbolic information in the
agent to heuristically provide it with knowledge.

This analysis has several implications for the design of
the mechanism. These implications are further discussed
in the next section, but the most important one is that
the mechanism cannot depend on the agent’s procedural
knowledge to initiate the search nor to provide a cue to
guide search, since it must be robust to the agent’s lack of
knowledge of both when to search and what to search for.
The mechanism must therefore be automatic or spontaneous
and uncued — hence the focus of this paper on spontaneous
retrieval. In particular, we claim that spontaneous retrieval
can, under the right circumstances, allow an agent to
overcome its lack of knowledge of:

C1 when to search long-term memory

C2 what to search for in long-term memory, if the cue is
unknown

C3 what to search for in long-term memory, if the relation
of the cue to the desired knowledge is unknown

The Space of Spontaneous Retrieval
Mechanisms

The problem of missing or incorrect heuristics for knowl-
edge search presents additional constraints on spontaneous
retrieval beyond the need for it to be automatic and uncued.
Within these constraints and guided by the theoretical
benefits, there is a space for variations in implementation.

The first consideration is the conditions under which
a spontaneous retrieval should occur, which must take
into account its interaction with deliberate retrieval. The
simplest choice is to provide an additional buffer into
which spontaneously retrieved elements can be placed, so
that deliberate retrievals are not overwritten. This requires
the agent to decide which of the two retrievals are more
important, or otherwise integrate these two sources of
information. On the other hand, having a single buffer for
both retrievals better reflects how both mechanisms serve the
same purpose in knowledge search, allowing the agent to be
agnostic as to the source of the retrieval. In such an approach,
spontaneous retrievals occur only when no other retrievals
are deliberately initiated by the agent.

A different consideration is that the retrieved element
should be relevant to the agent’s current situation. This is a
requirement shared with deliberate retrieval, and if activation
is used as a proxy for relevance, the solution of spreading
activation also applies to spontaneous retrieval. There is,
however, no standard algorithm for spreading activation;
in particular, the source of the spread may be different. In
ACT-R, spreading activation originates from elements in



working memory, increasing the likelihood that its immediate
neighbors will be retrieved. Note that the activation due to
spreading is separate from the activation due to base-level, so
the resulting retrieval bias may lack the historical context of
previous retrievals. A different spreading mechanism could
directly affect base-level, by treating the event as another
retrieval or storage. More nuanced spreading mechanisms
are also possible, where there is a limit to the distance to
which activation spreads, or where the change in retrieval
bias decreases as the affected element is further away from
the source. Finally, if the knowledge graph includes cycles,
there may be differences in whether spreading affects the
same element multiple times; in this case, mechanisms like
inhibition may be necessary to prevent runaway positive
feedback loops (Lebiere and Best 2009).

Although non-activation-based mechanisms are also pos-
sible — one can cast spontaneous retrieval as learning a
mapping from agent state to a single long-term memory
element — they are not well studied in literature.

A related but separate design decision is the selection of the
element to be retrieved. Several possibilities exist, drawing
inspiration from action selection in reinforcement learning: to
always select the most highly activated element; to be epsilon-
greedy, where the most highly activated element is selected
except for some small probability of a random selection; or
to use a softmax function where the probability of an element
being retrieved is proportional to its activation value. Again,
these options also exist for deliberate cued retrieval, except
that with spontaneous retrieval, there is no hard constraint
for the element to match a cue; in fact, uncued retrievals are
a natural extension of partial matching mechanisms that are
available in ACT-R and in Soar’s episodic memory.

Implementation In Soar
For our implementation of spontaneous retrieval in Soar, we
chose to maximize the similarities between deliberate and
spontaneous retrieval, and to highlight the unique aspects of
spontaneous retrieval. Spontaneous retrieval therefore selects
the most highly activated element and uses the same buffer
as deliberate retrieval, and only occurs when no deliberate
retrievals are in progress. Spreading activation occurs
whenever an element is stored or retrieved, and is treated as
another access to the affected elements. Specifically, both the
parents and the children of the source node, and the parents
and children of those neighbors, and so on, are all affected,
up to some parameterized distance d.

There are three constraints on spontaneous retrieval to
prevent positive feedback loops. First, activation is not
allowed to spread in a cycle, so each element could only
be activated once per spread. Second, spontaneous retrieval
can only return elements that are not already in working
memory, with the exception that, if the element that was
previously spontaneously retrieved remains the most highly
activated one, it is kept in working memory and no other
element replaces it. Finally, spontaneously retrieved elements
do not receive a boost in base-level activation; this prevents
the element from continually having the highest activation.

In terms of computational efficiency, calculating the effects
of spreading activation is expensive, and has been an ongoing

research problem for the cognitive architecture community
(Douglass and Myers 2010; Chen, Petrovic, and Clark 2014).
The goal of this research is to investigate the functionality
that spontaneous retrieval affords, so our implementation
of spreading activation is straightforward and unoptimized.
The functionality of our implementation of spontaneous
retrieval does not depend on the underlying implementation
details of spreading activation. Specifically, Soar’s long-term
memory is implemented as a SQLite database, which uses
indices to allow efficient queries; in particular, all long-term
memory elements are indexed by their activation value for
fast deliberate retrieval (Derbinsky, Laird, and Smith 2010).
For spontaneous retrieval, an element is selected by iterating
through the index until an element is found that is not already
in working memory. This allows spontaneous retrieval to
take advantage of any efficiency improvements for spreading
activation, and data are presented below to show the costs of
these two processes separately.

Evaluation in the Missing Link Domain
In order to evaluate the benefits of spontaneous retrieval,
we use the Missing Link word puzzle as a domain. In
this puzzle, the agent is given three words (stems) as the
clue (for example, fall, fort, and time), and must
provide a fourth word (the link; in this case, night) that
forms compound words or phrases with all three stems
(nightfall, fortnight, nighttime). The puzzles
used in this evaluation are gathered from the Unix word list,
using compound words that can be completely divided into
two shorter words; a total of 550 compound words formed by
195 stems are used, with each stem being used in an average
of 2.8 compound words. In the single-link representation
(explained below), the compound words and stems form a
connected bipartite graph of diameter 12.

It should be noted that this puzzle is the same one used
in the Remote Associates Test (Mednick 1962), and it was
chosen for some of the same reasons. In addition to the
large amount of search necessary to find the solution, the
puzzle also allows the agent’s knowledge and the important
features of the environment to be transparently manipulated.
Search guidance in this domain depends on the connections
between the stems and their compound words, which in turn
depends on the source of knowledge. A generic dictionary
may provide only the component stems of a compound
word, while a knowledge base optimized for the Missing
Link puzzle would have connections directly between the
stems. While the existence of the latter connections may
make the puzzle trivial, spontaneous retrieval may help with
less specialized representations. To model this variation in
knowledge, three different representations are tested in the
basic domain (they are also depicted in Figure 1):

• The single-link representation only has links from the
compound words to its prefixes and suffixes.

• The double-link representation also has links from the
stems to all their compound words.

• The direct-link representation also has links between the
prefixes and suffixes of any compound word.



a. single-link representation b. double-link representation c. direct-link representation

nightfall

night

prefix

fall

suffix

nightfall

night

prefix

fall

suffixcompound compound

nightfall

night

prefix

fall

suffixcompound

link

compound

link

Figure 1: Different representations of knowledge in the Missing Link domain. The nodes are labeled for convenience only; in
reality, the string that represents the word (eg. night) is a child of the node. For simplicity, other compound words that also use
these stems are not shown.

Two additional variations of the Missing Link domain are
used. In the first variation, Subset Missing Link, the agent
is additionally presented with distractors, other words that
do not form compound words with the missing link. In the
above example, the additional words foot and man might
also be presented to the agent. The addition of distractors
models how only a subset of features in the environment may
be relevant to the agent’s goals.

The second variation modifies the Missing Link domain
on a multi-puzzle level. In this Probabilistic Missing Link
domain, each puzzle has only some probability of being
solvable (that is, that a link exists between the three stems).
As with the first variation, this models how only a subset of
features are relevant, except in the temporal dimension.

These three domain variations correspond to three cases
where spontaneous retrieval is likely to be beneficial. In the
Missing Link domain with the single-link representation, the
agent does not know the relation of the stem to its compound
word (ie. whether it’s a prefix or a suffix), and must therefore
search memory with both (C3). For Subset Missing Link,
the agent does not know which portion of its percepts are
important and should be used as the cue to search memory
(C2), while for Probabilistic Missing Link, the agent does
not have knowledge of whether searching at this time will be
beneficial, or if it will just consume resources (C1).

Since the agent can always use brute-force search to find
the solution, the metric for this evaluation is not the number of
puzzles that the agent solves, but the amount of computation
needed to do so, in both decision cycles and real time.

Agent Design
In each puzzle, the domain presents the stems as strings.
Both agents with and without spontaneous retrieval must
first retrieve the long-term memory representations of the
stems. To correctly solve a Missing Link puzzle, an agent
without spontaneous retrieval must retrieve all compound
words that contain each stem, as well as the other stem that
forms those compound words, before finally checking if a
missing link exists that is shared by the compound words
of all three stems. The differences in representation only
determine how quickly this can be done. With the single-link
representation, the agent must do all of these steps. With the
double-link representation, the agent does not need to retrieve

the compound words. With the direct-link representation, the
agent can directly check for a missing link. This is true in the
two domain variations as well: the stems must be expanded
to detect which three have a missing link, just as they must
be expanded to determine whether a solution exists for any
three stems.

A different search process is possible with spontaneous
retrieval. When the memory element representing each stem
is retrieved, activation spreads to its compound words and
to the other prefix/suffix. Since the missing link is the
only word which receives three activation boosts, it has the
highest activation and is the first element to be spontaneously
retrieved. The agent can then verify that the spontaneously
retrieved word forms compound words with all three stems.
The benefit of spontaneous retrieval is therefore that the
stem–compound-word–stem connections do not need to be
deliberately explored. Alternately, spontaneous retrieval can
be thought of as using spreading activation to specify a search
criteria based on the graph topology around the cue elements,
one that is not constrained to return elements that must be
direct neighbors of the cue.

Deliberate and spontaneous retrievals should not be
thought of as separate strategies, however, but as two mecha-
nisms working towards the same goal. Spontaneous retrieval
is returning elements that the agent could deliberately retrieve,
given the correct sequence of retrievals with the correct cues
— since in this domain deliberate retrieval is only used for
brute-force search, spontaneous retrieval allows the agent to
skip ahead in its reasoning. However, there are also cases
where spontaneous retrieval may mislead the agent; for the
Subset Missing Link domain in particular, the retrieval of the
distractors could be interleaved with the retrieval of the real
stems, allowing time for the activation of the missing link to
decay. This may cause a more-recently-boosted element to
be returned by spontaneous retrieval instead, which would
fail the verification. In this case, the agent must resort to
the deliberate strategy, at least until a different element is
spontaneous retrieved.

It should be noted that the spontaneity of spontaneous
retrieval is not strictly necessary for this domain. Since the
puzzles are episodic, one can imagine the agent deliberately
retrieving the solution when a new puzzle is presented, but
using a mechanism that returns that most highly activated



element. This agent would do better than a spontaneous
retrieval agent, since it is taking advantage of the episodic
nature of the environment. To demonstrate the benefits of
spontaneous retrieval, however, the agent uses the deliberate,
brute-force search, but takes advantage of any spontaneously
retrieved knowledge; that is, spontaneous retrieval provides
usable knowledge without being asked to do so. The focus is
on spontaneous retrieval complementing deliberate retrieval,
especially when brute force becomes more expensive in the
Subset and Probabilistic Missing Link variations.

For this reason, agents must be designed so that they can
move from deliberate retrievals to spontaneous retrievals and
back, and be able to integrate information from both. This
can be achieved by conditioning the processing of retrieved
memory elements not by the mechanism that retrieved it, but
by the information that it represents. For example, in the
Missing Link domain, if the retrieved element is a compound
word that contains a stem, it should be stored so that the other
prefix/suffix can be retrieved later; on the other hand, if the
retrieved element is not connected to the stems, it may be
the missing link, and it should be verified as the answer. The
key is that these behaviors depend only on the agent state
and how the retrieval should be used, but not on whether the
retrieval was deliberate or spontaneous. Rules that process
retrievals only match on the features of the retrieved element,
and not on which mechanism retrieved the element or why it
is retrieved; in fact, neither mechanism provides the latter. By
separating the processing of information from the its source,
the agent can effectively use both the knowledge that it knows
it needs as well as any spontaneously retrieved shortcuts.

Results
All results in this section are averaged over 100 puzzles.
Since each puzzle is independent, the agent is reset between
puzzles to negate any recency and frequency effects of
activation. The knowledge of compound words and their
stems is loaded into the agent’s long-term memory before
each puzzle. Spreading activation is limited to a distance of
two, the distance necessary to reach the solution word (from a
stem to its compound words, then from the compound words
to the missing link); we briefly discuss the effects of alternate
settings of this parameter in the conclusion. All agents are
written as deliberate agents, with the processing of retrieved
elements then modified to be agnostic to the retrieval
mechanism. In fact, the “deliberate” and “spontaneous”
agents have the exact same rules, with the only difference
being that the architecture provides spontaneous retrievals
for the “spontaneous” agent. No effort was made to space
deliberate retrievals so that spontaneous retrievals could
occur.

Efficiency of Spontaneous Retrieval
To evaluate the efficiency of spontaneous retrieval, we
instrumented Soar to measure the amount of time spent
calculating the effects of spreading activation, versus that
of selecting the most highly activated element in long-term
memory. Averaged over 100 puzzles, an agent with the single-
link representation takes an average of 350.7 milliseconds to

solve a puzzle, of which 335.2 milliseconds is spent updating
activation values, and only 0.85 milliseconds for spontaneous
retrieval; this sub-millisecond cost over multiple decision
cycles is inconsequential given that cognitive architectures
limit each individual decision cycle to 50 milliseconds.

Since spreading activation also affects the outcome of
deliberate retrievals, it is included in the results below for
both the deliberate and spontaneous agents.

Missing Link
The purpose of this experiment is to demonstrate that
spontaneous retrieval can overcome a lack of knowledge
of how percepts relate to the desired knowledge. A brute-
force search would require the agent to iterate through all
possible relations in the worst case, although there are only
two possible relations (ie. prefix or suffix) in this domain.
The average number of decision cycles and amount of real
time needed to solve a puzzle by different agents are shown
in the table below.

Knowledge Decision Cycles Real Time (msec)
Rep. Delib. Spon. Delib. Spon.

Single 56.1 24.5 2631.6 350.7
Double 60.9 60.9 1167.7 1173.1
Direct 12.0 12.0 267.8 268.3

For the single-link representation, the spontaneous retrieval
agent takes half the number of decisions to complete the task,
and an even smaller proportion of real time. As hypothesized
during the discussion of agent design, this is because
activation spreads to the missing link, which spontaneous
retrieval then puts into working memory. This eliminates
many decision cycles during which the deliberate approach is
exhaustively expanding the stems and the compound words.
The difference in real time is more dramatic because of the
cost of spreading activation — since there are fewer retrievals,
there are fewer boosts to base-level activation and therefore
fewer spreads. This difference would be smaller with a more
efficient spreading activation algorithm.

Spontaneous retrieval has little effect on either metric
for the other two representations, although the source of
this lack of differentiation is different. For the direct-
link representation, the missing link could be immediately
determined after the stem elements are retrieved, removing
the need to search long-term memory. For the double-
link representation, the majority of agent processing is
from retrieving the other prefix/suffix of the compound
words; there are no gaps between these uses of long-term
memory, leaving no opportunity for spontaneous retrievals
to occur. This raises questions about balancing deliberate
and spontaneous retrievals, as well as whether spontaneous
retrievals should be placed in a different buffer; these
issues are addressed in the conclusion. Regardless, although
spontaneous retrievals has no benefits when these knowledge
representations are used, it also incurs minimal cost.

The results across all three knowledge representations
agree with the original insight that spontaneous retrieval
supplements deliberate retrieval when the agent lacks search-
guidance knowledge. The more optimized the knowledge
base for a task — as more connections are added between



stems and their links — the more effective deliberate
retrieval becomes, and the less spontaneous retrieval can
offer. On the other hand, spontaneous retrieval can provide
the agent with relevant knowledge when brute-force search
is necessary, greatly reducing processing time. Since the
single-link representation best highlights the difference
between deliberate and spontaneous retrievals, it is the only
representation used for the remaining results.

Subset Missing Link
The presence of distractors in the Subset Missing Link
domain means that the agent must retrieve more compound
words before the missing link can be identified. In terms of
search, this increases the number of initial states (memory
elements), thereby increasing the size of the search “frontier.”
To be explicit, distractors are presented in addition to the
three stem words, so the agent is presented with five clue
words for a puzzle with two distractors. Results from this
domain variation are shown in the table below.

No. of Decision Cycles Real Time (msec)
Distractors Delib. Spon. Delib. Spon.

0 56.1 24.5 2631.6 350.7
1 65.1 26.6 3048.6 341.4
2 70.9 28.2 5752.1 319.4
3 80.8 32.8 3679.1 613.5
4 84.5 40.0 17591.5 840.0

Although both agents with and without spontaneous
retrieval require more resources to deal with distractors,
the agent with spontaneous retrieval requires less additional
resources to do so. For the spontaneous retrieval agent, this
growth is due to the extra decision cycles necessary to retrieve
the long-term memory representations of the distractors. The
deliberate retrieval agent, however, also needs to search for
all the compound words for those distractors, hence the larger
increase. These results suggest that, for domains where the
relevant percepts are not obvious, search-guidance knowledge
is doubly important, as search grows exponentially with the
number of irrelevant percepts. This is true with spontaneous
retrieval as well, but using activation as a heuristic reduces
the exponential.

Despite this increase in resource consumption, sponta-
neous retrieval allows the agent to sidestep the selection of a
cue for deliberate search, and continues to reduce the amount
of computation necessary for the agent to solve the puzzle.

Probabilistic Missing Link
The goal of this experiment is to show that spontaneous
retrieval can overcome the lack of knowledge of when to
retrieve from long-term memory. Unlike the previous exper-
iments, here the role of spontaneously retrieved elements
is not only to provide the correct answer, but also to be a
heuristic for whether an answer exists at all. This additional
assumption is reflected in how the agent with spontaneous
retrieval does not continue to retrieve words until the solution
is found. Instead, when a new puzzle is presented to the agent,
it simply attempts to verify whether the first spontaneously
retrieved element is the missing link. The results of two
different verification procedures are shown: the more costly

method (V1) retrieves all compound words of the potential
solution, while the more efficient method (V2) directly
checks for compound words formed by the potential solution
and the stems. For the agent without spontaneous retrieval,
no such heuristic for solvability is available, and it must
therefore deliberately retrieve all compound words before
giving up.

Prob.
Solv-
able

Decision Cycles Real Time (msec)

Delib. Spon. Delib. Spon. Spon.
V1 V1 V2

1.0 56.1 24.5 2631.6 350.7 100.5
0.9 56.1 25.9 2602.9 442.4 159.6
0.8 55.5 27.6 2464.0 628.4 165.4
0.7 56.0 29.8 2555.8 744.8 178.0
0.6 55.9 30.5 2459.8 777.9 179.9
0.5 53.9 31.9 2099.2 861.9 186.5
0.4 51.4 35.3 1677.9 1135.3 218.3
0.3 50.3 38.1 1574.2 1450.2 247.0
0.2 49.5 40.0 1400.6 1633.9 263.4
0.1 49.0 41.2 1324.1 1768.4 264.3
0.0 47.8 42.7 1099.5 1858.6 316.8

The results for the single-link agents are shown in the
table above. Although the agent with spontaneous retrieval
can often identify solvable puzzles in fewer decisions than
agents without spontaneous retrieval, whether it can do so
in less real time depends on the verification method. The
deliberate agent gives up sooner on unsolvable puzzles, since
those stems tend to have fewer compound words (as it would
otherwise increase the probability that a missing link exists).
No such trend exists for the spontaneously retrieved element:
a word that has the most neighbors would have the highest
activation, regardless of whether the puzzle is solvable. This
is exacerbated by the quadratic time necessary to complete
the naive method of iterating through all compound words
(V1), which only takes linear time for the more efficient
method (V2). As spontaneous retrieval is less and less likely
to return the solution, the verification of the solution could
take more time than iterating through the compound words,
leading to the tradeoff seen in the results for the naive
verification method.

Assuming the cost of verification is low, these results show
that spontaneous retrieval can cheaply provide the agent
with knowledge, even if the agent is uncertain whether that
knowledge exists.

Discussion
In all three variations of the Missing Link domain, the use
of spontaneous retrieval leads to agents that more quickly
complete their tasks. Spontaneous retrieval provides a short-
cut through brute-force search; allows the agent to efficiently
ignore distractors; and indicates whether relevant knowledge
exists in long-term memory. Both the spontaneity and the
spreading activation bias are necessary for these benefits:
spreading activation reduces the time needed for search, while
the spontaneity allows the agent to search less frequently.
Together, these results provide evidence for our hypothesis
that spontaneous retrieval can supplement deliberate retrieval



as a heuristic to overcome a lack of knowledge of when to
search and what to search for.

Since spontaneous retrieval is a new mechanism, there
are many questions that have not been explored in this
paper. A high level question is how the agent should
decide whether to use deliberate retrieval or to rely on
spontaneous retrieval. This is an exploration-exploitation
tradeoff: deliberate retrieval can be exploited if the search-
guidance knowledge is correct, while spontaneous retrieval —
a cue-less, unguided exploration of long-term memory — can
mitigate incorrect search knowledge and provide shortcuts
to relevant knowledge, but may also consume resources
for verification. This formulation of the problem suggests
that reinforcement learning techniques can be applied, to
generally learn the utility of each mechanism, or to fine-tune
whether spontaneous retrieval should be used in a particular
context. Alternately, spontaneously retrieved elements could
be placed in a separate buffer so that it is always available;
however, the integration of information from the different
mechanisms would become more difficult.

Another major area of research is the uncued selection of
a long-term memory element. Several different algorithms
for spreading activation were discussed in the agent design
section, while other definitions of “relevance” may bring
to mind algorithms from case-based reasoning or analogical
reasoning (Riesbeck and Schank 1989; Pickett and Aha 2013).
These choices are likely to also be influenced by the structure
of the knowledge base, such as the average in- and out-
degrees or the diameter of the knowledge graph, as well
as the distance to a relevant memory element.

In a preliminary investigation of these issues, we varied
the distance over which activation spreads, in the single-link
Missing Link domain. While decreasing the limit merely
reduced performance to the level of deliberate retrieval,
increasing the limit increased the number of decision cycles
and the amount of real time needed by a spontaneous retrieval
agent. The real-time growth is mostly caused by spreading,
as the activation of exponentially more long-term memory
elements must be boosted. This led to unwanted elements
having higher activation than the desired elements, leading
to the retrieval of the former and forcing the agent to attempt
verification before failing, hence the growth in the number
of decision cycles. It is possible that this problem could be
sidestepped by using other models of spreading activation,
such as one where the boost decreases over distance.

Finally, further research is needed to identify domains
where agents lack search-guidance knowledge and to de-
termine whether spontaneous retrieval can help in those
cases. The results presented here suggest environmental
properties that may limit the effectiveness of spontaneous
retrieval, such as the degree to which long-term memory
is optimized for a task, the presence of distractors, and
the cost of verification. In goal management, for example,
where spontaneous retrieval may be applicable (Li and Laird
2013), these factors translate into properties such as the
complexity of the description of the goal and the amount
of other knowledge that the agent has. These factors should
be taken into account when deciding whether to supplement
deliberate retrieval with spontaneous retrieval.

Acknowledgments
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and system
approaches. AI Communications 7(1):39–59.
Anderson, J. R. 2007. How Can the Human Mind Occur in
the Physical Universe? Oxford University Press.
Chen, Y.; Petrovic, M.; and Clark, M. H. 2014. SemMemDB:
In-database knowledge activation. In Proceedings of the 27th

International Florida Artificial Intelligence Research Society
Conference, 18–23.
Derbinsky, N.; Laird, J. E.; and Smith, B. 2010. Towards
efficiently supporting large symbolic declarative memories.
In Proceedings of the 10th International Conference on
Cognitive Modeling, 49–54.
Douglass, S. A., and Myers, C. W. 2010. Concurrent
knowledge activation calculation in large declarative memo-
ries. In Proceedings of the 10th International Conference on
Cognitive Modeling, 55–60.
Ebbinghaus, H. 1913. Über das Gedächtnis (Memory:
A Contribution to Experimental Psychology). Columbia
University.
Hintzman, D. L. 2011. Research strategy in the study of
memory: Fads, fallacies, and the search for the “coordinates
of truth”. Perspectives on Psychological Science 6(3):253–
271.
Kvavilashvili, L., and Mandler, G. 2004. Out of one’s
mind: A study of involuntary semantic memories. Cognitive
Psychology 48(1):47–94.
Laird, J. E. 2012. The Soar Cognitive Architecture. MIT
Press.
Lebiere, C., and Best, B. 2009. Balancing long-term
reinforcement and short-term inhibition. In Proceedings of
the 31st Annual Conference of the Cognitive Science Society.
Lebiere, C. 2014. Personal communication, August 27th,
2014.
Li, J., and Laird, J. E. 2013. The computational problem
of prospective memory retrieval. In Proceedings of the 12th

International Conference on Cognitive Modeling, 155–160.
Mednick, S. A. 1962. The associative basis of the creative
process. Psychological Review 69(3):220–232.
Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press.
Pickett, M., and Aha, D. W. 2013. Spontaneous analogy
by piggybacking on a perceptual system. In Proceedings of
the 35th Annual Conference of the Cognitive Science Society,
3229–3234.
Raaijmakers, J. G. W., and Shiffrin, R. M. 1981. Search of
associative memory. Psychological Review 88(2):93–134.
Riesbeck, C. K., and Schank, R. C. S. 1989. Inside Case-
Based Reasoning. Psychology Press.


