
Preliminary Evaluation of Long-term Memories
for Fulfilling Delayed Intentions

Justin Li and John Laird
University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121 USA
{justinnh, laird}@umich.edu

Abstract

The ability to delay intentions and remember them in
the proper context is an important ability for general
artificial agents. In this paper, we define the functional
requirements of an agent capable of fulfilling delayed
intentions with its long-term memories. We show that
the long-term memories of different cognitive architec-
tures share similar functional properties and that these
mechanisms can be used to support delayed intentions.
Finally, we do a preliminary evaluation of the different
memories for fulfilling delayed intentions and show that
there are trade-offs between memory types that warrant
further research.

Introduction
The ability to manage multiple goals has always been a
desired capability of artificial intelligence systems. How-
ever, there has been a dearth of research on the ability of
artificial agents to fulfill delayed intentions — goals that
the agent cannot immediately act on, but must remember
and later recall in order to fulfill. Given the complex
environments that agents could exist in, conflicting goals
and inopportune surroundings may often require goals to be
set aside. The ability to notice that a suspended goal should
now be pursued and to recall the appropriate actions to take
is therefore critical to general artificial agents.

A critical element of delayed intentions is that an agent
must first form an intention, then later act on the same
intention. This persistence over time requires the agent to
keep track of its internal state — or in plainer language, to
maintain memories of past events. Making the assumption
that delayed intentions are not privileged by the architecture
or otherwise different from other objects, intentions must
be stored into and retrieved from memory through the same
mechanisms as other memory structures.

The contribution of this paper is threefold. First, we
define requirements for agents attempting to support delayed
intentions with long-term memories. Second, we survey
long-term memory systems across multiple cognitive archi-
tectures, showing that they can be classified into groups with
similar functional profiles. Each of these groups provide

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

different ways of fulfilling delayed intentions. Finally, as
an evaluation of these methods, we’ve implemented agents
using the memories in Soar, such that their accuracy and
scalability can be compared.

Delayed Intentions in Artificial Agents
The ability to fulfill delayed intentions has been a growing
field of study in psychology, where it is called prospective
memory (McDaniel and Einstein 2007). A prospective
memory task is one in which an agent is actively engaged in
other background tasks between the formation of the intent
to act and its ability to do so. Critical to this definition is that
the intention is not immediately accessible to the agent when
it must act, resulting in the conundrum of remembering to
remember the intention. Such tasks are common in daily
life: the intent to buy milk on the way home after work
is one such example, as is the intent to attend a meeting
next Wednesday at 3pm. More concretely, we say that an
intention has two components: a target, the context in which
an agent should act; and an action, which the agent must
perform to fulfill the intention. A delayed intention is one
which the target for the intention is not present when the
intention is formed.

The need to remember and retrieve structures when
fulfilling delayed intentions suggests that some kind of
memory system is involved. Many cognitive architectures
incorporate memories of different encodings, interfaces, and
longevities; consistently among these variations is the sepa-
ration of long-term and short-term memories. Knowledge
in the former is less susceptible to removal, but requires
longer time spans to create or recall; knowledge in the
latter can be quickly manipulated by the agent for further
reasoning, but is computationally expensive to maintain.
An agent capable of delayed intentions must effectively use
both types of memories. On the one hand, the intentions
themselves must be stored in long-term memory to persist
for any significant length of time; on the other hand, the
agent must have quick access to the intentions, such that
it can take action at the right time. Since the length of
delay of an intention is unknown, the simplest scheme is to
store intentions in long-term memory and only retrieve them
into short-term memory when they are needed. Although
it is possible to keep the intentions in short-term memory,
there are two disadvantages to this approach. First, this

violates expected usage of short-term memory — a long-
lived agent may have a large number of intentions at the
same time, and it is unlikely that the agent will have all
intentions in short-term memory while performing other
tasks. Second, decision making with large states has been
known to be computationally expensive; even an optimized
algorithm such as RETE suffers as the number of items it
could match is increased (Forgy 1979). For these reasons,
we only explore methods that keep delayed intentions in
long-term memory.

The idea of studying the interaction between goals and
agent memory is not new. There has been several studies
using ACT-R to model certain delayed intention processes
in human cognition. One study (Lebiere and Lee 2002)
modeled the Intention Superiority Effect, which describes a
phenomenon in humans where intended actions are quicker
to retrieve than other memories. Another study (Elio 2006)
looked at whether two different models of prospective mem-
ory correlated with human data. Both studies rely on the
spreading of activation within ACT-R’s declarative memory
to bring delayed intentions to the agent, as well as treating
intentions differently from other objects. Although this is
a plausible method for agents to retrieve goals from long-
term memory, neither was done in the context of background
tasks. The addition of other processing in the agent would
disrupt intention structures, allowing intentions to decay
in activation. A general approach to delayed intentions
requires a more stable method of storing intentions.

There is also more general work on how agents might
manage goals. The life-cycle of goals has been explored
in the context of belief-desire-intention (BDI) agents, where
goals could be suspended if the context of the goal is invalid,
then become an option for the agent to pursue when the
context is appropriate. A goal being pursued is first active,
and when it is finally completed, it is dropped (Braubach et
al. 2005). Although this describes the general progression
of delayed intentions, it is unclear what mechanisms agents
are needed by agents to manage goals in this manner — in
particular, how memory systems can efficiently find satisfi-
able goals. There has also been work in augmenting BDI
agents with different memory systems, but the interaction
between goals and memories was left unspecified (Brom and
Lukavský 2008).

Functional Requirements of Delayed
Intentions

Before we consider the properties of long-term memories
and how they might be used to fulfill delayed intentions, we
need to consider the obvious alternative of a separate goal
memory. Many architectures and agent frameworks have
built-in goal/intention structures; traditionally, however,
these structures are in the form of goal stacks, which favor
hierarchical goals in supergoal-subgoal relationships. This
assumption suggests that such structures are inappropriate,
as delayed intentions may be embedded in background
tasks that have no relationship to the intention. This
mismatch notwithstanding, recent work has suggested that
this restricted form of goal memory is unlikely in humans

(Altmann and Trafton 1999). It is more probable that
goals are merely another element in the agent’s memory,
and are treated in the same way. The findings of single
dissociation between prospective and retrospective memory
— that the former uses general purpose memories in its
operation — strengthens this position (Burgess and Shallice
1997). While we do not rule out the possibility of a
special-purpose goal memory, this work is motivated by the
hypothesis that a goal memory is not necessary for delayed
intentions. We therefore limit ourselves to only using
existing general purpose memory mechanisms provided by
architectures, with the hope that it will provide insight into
delayed intentions management and the usage of memories
in agents.

With this restriction, we can define the function require-
ments of an agent capable of fulfilling delayed intentions.
We follow the life cycle of an intention (Braubach et al.
2005): suspension and storage, recognition, pursuance, and
completion.

Suspension and Storage When an intention is first formed,
the agent must store it into long-term memory. This
requires that the agent be able to represent both the target
and the actions of the intention as well as to add the
representation to its long-term memory.

Recognition In between the formation of the intention
and the appearance of the target, the intention may
not be immediately accessible; despite this, the agent
must recognize that the target to an intention is being
presented. The agent’s behavior must therefore either
be directly influenced by long-term memory structures,
or else include accesses and retrievals from memory in a
tight loop.

Pursuance When the agent decides to fulfill the intention,
it must be able to retrieve the associated actions from its
long-term memory.

Completion Finally, once the intention has been com-
pleted, the agent must modify its behavior such that it
does not attempt to pursue the same intention if the target
appears again in the future. This requires the agent to
maintain the status of the intention and be able to change
its memory to reflect that status.

Properties of Long-Term Memories
Although multiple cognitive architectures have been devel-
oped over the years, many share similar long-term memory
mechanisms. Particularly relevant for supporting delayed in-
tentions are the following properties of long-term memories:

Encoding What type of knowledge is stored? How is this
knowledge represented, both to the agent and to the mem-
ory system? Can the agent reason over this knowledge,
or is there no declarative representation available for the
agent?

Storage Is storage deliberate (agent-initiated) or automatic
(architectural)? If storage is deliberate, when is the agent
allowed to add to memory? If storage is automatic, what
triggers automatic storage?

Retrieval How can the agent retrieve knowledge? What
information does the agent need to cue retrieval of
knowledge? How can the agent effectively find relevant
information, given the rich features of the environment
and a large memory?

Modification If previously stored knowledge is wrong, how
can the agent correct this knowledge, if at all? Can
irrelevant knowledge be removed from memory, and is
this process deliberate or automatic?

The major division we make between long-term memo-
ries is the type of knowledge encoded. Within this division,
the similar uses of memory lead to shared solutions in the
other questions listed above. In this way, we build up
profiles of memory systems, which we then analyze for suit-
ability for supporting delayed intentions. In the following
subsections, we examine in detail different implementations
of procedural, semantic, and episodic memories. Although
there are other types of memories to consider, such as
life-long allo-centric spatial memory (Brom and Lukavský
2008), their role in supporting delayed intentions is unclear.

To obtain a sufficiently broad sample of long-term memo-
ries, we compare the following cognitive architectures in this
work, using these primary references: ACT-R (Anderson
2007), CLARION (Sun 2006), GLAIR (Shapiro and Bona
2009), HOMER (Vere 1991), LIDA (Snaider, McCall, and
Franklin 2011), Polyscheme (Cassimatis et al. 2007), and
Soar (Laird 2008). For reference, a summary of the
properties of different memory systems is given in Table 1.

Procedural Memory
Procedural memory is the memory for how an agent should
behave. Conceptually, knowledge in procedural memory
can often be described by if-then rules, where the “then” part
encodes actions the agent should take when the “if” part is
true. The close link between procedural memory and agent
behavior means that any learning agent must ultimately
modify its procedural memory. Directly, this can be done by
changing procedural memory via the addition or removal of
rules. Indirectly, the agent could also change the preferences
that dictate the application of rules, such as whether one
rule should be applied instead of others. Changing these
preferences would also alter the agent’s behavior.

Although architectures use different encodings for their
rules in procedural memory, there are functional similar-
ities between the different implementations of procedural
memory. First, procedural memories all modify the state
of the agent’s short-term memory; the rules in procedural
memory match structures in short-term memory, after which
the actions of the rule will apply (barring architectural
constraints on rule firing). Although this may include buffers
into which knowledge from other long-term memories can
be retrieved, there is often no direct access to semantic and
episodic memory.

Second, although the rules are encoded differently, proce-
dural memory is often implicit: the agent has no declarative
access to the rules. Although some architectures allow
agents to directly modify their procedural memory (e.g.
GLAIR), this is uncommon. Instead, most architectures

support a limited mechanism for adding knowledge to
their procedural memory, often in the form of compressing
several reasoning steps into one (e.g. ACT-R, Soar). The
primary effect of either learning method is that the agent
becomes more efficient: solving the same problem a second
time takes less resources than the first run through. In
addition to modeling learning by contiguity (Anderson
2007), procedural learning could also be used to learn
semantic knowledge through a process called data-chunking
(Rosenbloom, Laird, and Newell 1987). With this approach,
agents represent semantic knowledge procedurally.

A result of the lack of declarative access is that agents are
unable to modify or remove rules once learned, rendering
procedural memory append-only. To compensate for this,
architectures often have other mechanisms to recover from
incorrectly learned rules (Laird 1988). For example, the
agent might learn other rules which control the application
of the first one. Errors might also be correctable using
subsymbolic mechanisms, such as reinforcement learning
or neural networks, which can devalue rules such that they
never apply.

These features of procedural memory prescribe a general
method to use it for storing delayed intentions. An agent
must learn a rule that contains both the target and the action
of the intention. The semantic knowledge stored in this
rule is conditioned on the target, such that the rule will fire
when the target is perceived. Since the application of the
rule provides the agent with the necessary actions to take,
no deliberate reasoning is necessary to recall the intention.
After the intention is fulfilled, the agent must then prevent
itself from pursuing the intention again. For architectures
where the removal of rules is possible, this is trivial; for
other architectures, the exact method for this suppression
would be architecture-dependent.

Although the general method above would allow agents
to fulfill delayed intentions, there are drawbacks especially
for architectures where agents have no declarative access
to rules. Since rules in many architectures persist for the
lifetime of the agent, the number of irrelevant rules would
monotonically increase. This creates a burden on the system,
and can become expensive in both time and space after
agents have fulfilled thousands of intentions. Further more,
since agents do not know what rules are in memory, they
cannot determine what intentions they have already made.
In the example of buying milk, an agent might find itself
visiting the grocery store for a separate errand, when it is
desirable to also complete the delayed intention. Without
declarative access to procedural memory, however, the agent
lacks even the knowledge that it has an intention, never mind
what the target or action of the intention is.

Semantic Memory
Semantic memory encodes the common-sense notion of
knowledge. It stores generalized facts and statements about
the world, without contextual information of when the agent
learned this knowledge. Traditionally within the artificial
intelligence community, the distinction between short-term
working memory and long-term semantic memory is vague.
Logic-based architectures often use a single memory to

Architecture Procedural Memory Semantic Memory Episodic Memory
Declarative Removable Storage Retrieval method Storage Retrieval Method

ACT-R No No Automatic Under-specified query N/A N/A
CLARION No No Automatic Associative search Automatic By time

GLAIR Yes Yes Deliberate Inference N/A N/A
HOMER Yes unknown Automatic Inference Automatic Automatic association

LIDA No No Automatic Associative search Automatic Associative search
Polyscheme No No Deliberate Various N/A N/A

Soar No No Deliberate Under-specified query Automatic Over-specified query

Table 1: Summary of the capabilities of memory systems in different cognitive architectures. Procedural memory is declarative if the
agent can reason about rules, and removable if rules can be deleted. For semantic and episodic memories, storage is how the agent stores
knowledge to memory, and retrieval method is the type of searches possible. An under-specified query is one where the memory object must
contain all searched-for attributes, while an over-specified query allows attributes to be missing. Some notes on particular architectures and
mechanisms. CLARION, due to its dual representation memory, can perform both symbolic matching as well as a subsymbolic associative
search. HOMER’s episodic memory includes a daemon that notifies the agent whenever current events have occurred before. LIDA’s sparse
distributed memory uses associative search, the details of which can be found elsewhere (Kanerva 1993). The Polyscheme architecture has
multiple specialist modules, each of which may implement separate knowledge retrieval algorithms.

store both the agent’s state as well as semantic domain
knowledge; however, this is neither psychologically plau-
sible nor efficient, as reasoning by the agent often slows
down as short-term memory size increases (Wang and Laird
2006). Some architectures continue to combine short-term
working memory and long-term semantic memory in the
same system (e.g. GLAIR, HOMER), with no distinction
between the two. Even for such systems, there is often
the concept of retrievals from memory, in contrast to the
automatic matching of procedural rules. The necessity of
agent deliberation in making the retrieval is what unites what
we call semantic memory.

Outside of the encoding of knowledge, the semantic
memories of different architectures are remarkably similar.
Agents often have the ability to create new short-term
structures to be stored into semantic memory, although
some systems have mechanisms which automatically store
new information (e.g. ACT-R). For retrieval, agents can
retrieve elements of semantic memory either directly or
through some interface in working memory. A retrieval
requires the agent to create a target, which is a description
of the desired properties of the object stored in memory.
Semantic memory then returns an object that includes all
the properties described, subject to architectural bias if
multiple objects match the description. Finally, agents can
also change the contents of semantic memory, or optionally
entirely remove knowledge from the store.

As much as semantic memory seems like a natural exten-
sion of short-term memory, there is one crucial difference:
procedural memory can only directly access the latter but
not the former. Thus, although delayed intentions could
be stored in and retrieved from semantic memory, agents
would need a separate mechanism to trigger the search for
delayed intentions in memory. There does not appear to
a uniform way of doing so across architectures; as such,
this framework for using semantic memory to store delayed
intentions remains to be fully specified.

An advantage of using semantic memory for delayed
intentions is that it provides a declarative representation to

the agent, a capability not afforded by procedural memory.
The ability for the agent to modify semantic memory also
promises to at least reduce the cost of completing intentions,
as obsolete intentions can simply be removed. However,
the separation of semantic memory from short-term memory
— on which procedural memory matches — raises a
different problem. Although the agent has a declarative
representation of the intention, it cannot be matched directly
by procedural memory. The intention must therefore be
retrieved before the target appears to allow the agent to
act on it. This problem is exacerbated by the requirement
that semantic memory searches cannot be over-specified,
meaning that the agent must know a subset of the target
or the action for effective retrieval. A possible solution to
this problem is to relax the search constraint; however, this
requires the search to process superset queries (Terrovitis
et al. 2006), making it strictly more expensive. A general
solution to this problem remains an area of research.

Episodic Memory
Episodic memory was first described by Tulving (Tulving
1983) as a memory for the experiences of an agent. What
distinguishes episodic memory from other memories is that
it contains temporal information — all knowledge is ordered
by time. This ordering allows agents to “mental time travel”
through re-experiencing previous episodes. Although the
use of episodic memory in artificial agents is the least
explored of the long-term memories discussed, the general
consensus is that it captures knowledge that agents may
not know is important at the time. This provides multiple
advantages to agents (Nuxoll and Laird 2007), although
many remain unexplored in literature. Similarly, although
variations in episodic memory — such as forgetting or
otherwise removing information — is understood to be
useful, a systematic investigation remains to be done.

As its name suggests, the different episodic memory
systems are united in their inclusion of a timestamp for
each object. That aside, the main motivation for episodic
memory function is the ability to retrieve unknown contex-

tual knowledge. Automatic storage of episodes is essential
for this, as is the ability to search through the episode
store associatively. By this, we mean that the query for
the search can be over-specified — the episode returned
may contain only some of the attributes described. For
example, the intention to meet at Wednesday at 3pm could
be retrieved by both a search for “3pm” as well as a search
for “Thursday 3pm”, as the “3pm” attribute is shared by
the query and the result. The agent can therefore find
similar objects in its history, which the HOMER architecture
directly provides with a daemon. Of the different episodic
memories, the sparse distributed memory of LIDA deserves
special mention, as its retrieval iterates through potential
objects until it stabilizes, resulting in a gist representation
which may not match any single object in memory. Other
architectures also store temporal information: the activation
of ACT-R’s declarative memory serves as a rough indication
of whether an object was seen recently, while the GLAIR
architecture uses temporal logic as contextual information
on its internal states. However, neither architecture offers
any mechanisms that take advantage of the temporal element
outside of what their semantic memories already provide.

Episodic memory, because it was designed to capture
all information, allows for a very different approach to
using it for delayed intentions. Taking advantage of the
partial matching ability of episodic memory, agents query
for unfulfilled intentions using all the environmental features
it currently perceives as the cue. The associative nature of
the search then returns the intention whose target has the
most features that overlap with the agent’s state. Thus,
the act of recognizing a target and retrieving the action
is combined into the single process of searching episodic
memory. Together with the automatic capture of knowledge,
episodic memory reduces the amount of deliberate reasoning
required by the agent.

As with semantic memory, using episodic memory for
delayed intentions allows the agent to eliminate the life-
time cost associated with using only procedural memory.
Episodic memory also provides the agent with a declarative
presentation of intentions for reasoning, another advantage
it shares with semantic memory. The associative nature of
episodic memory search allows the agent to find intentions
with the currently perceived features as a target. This,
however, presents a two related problems. First, because,
the associative nature is not discriminative, a search could
return an already-fulfilled intention as it could ignore the
“unfulfilled” status of the intention. Second, since the
episode of the intention’s formation remains in episodic
memory, that episode could be returned despite the intention
being fulfilled later in the agent’s history. This is because
knowledge is only true at the time of storage, but not
necessarily at the time of retrieval. Solving these problem
would require extra processing for the agent, or perhaps a
more careful use of episodic memory.

Our Approaches
In this section we describe how we use the different
memories to fulfill delayed intentions in the Soar cognitive
architecture. Of the architectures compared, the different

memories of Soar has the least overlap in functionality,
and therefore provides a solid basis for comparison. We
constrain ourselves to existing mechanisms provided by
the memories, and use architecture-specific mechanisms to
build a functional system. Since the full design space
of delayed intention systems has not been explored, these
approaches should not be taken as the best way to overcome
the challenges listed above, but as first attempts towards
potential solutions and as the establishment of baselines for
future research.

Procedural Memory
Soar’s procedural memory is representative of the class
of procedural memories described above. The memory
encodes knowledge in if-then rules, which match on and
modify Soar’s short-term memory. Like many other archi-
tectures, Soar agents do not have declarative access to its
rules, and thus cannot remove them when appropriate. The
general method of using procedural memory applies well to
Soar agents, leaving only the problem of modifying memory
after the intention has been fulfilled. Following previous
work (Laird 1988), the agents instead learn a second rule
that negates the results of the first. This rule is conditioned
on the first rule being applied, and has the action of rejecting
the actions of the first rule. When a previous target appears,
the agent therefore attempts to act on the intention (the first
rule), but then stops itself in the attempt (the second rule).
The combined effect is that the agent only acts on intentions
a single time.

Using Soar’s procedural memory in this manner inherits
the disadvantages of general method — namely, that it fails
to provide the agent with a declarative representation of
existing intentions and imposes computation costs on the
agent when rules have to be suppressed. Furthermore, data-
chunking in Soar is an expensive process, requiring multiple
cycles of decision during which the agent could not perform
other tasks. This presents problems when fast response
times to the background event is required. On the positive
side, the learned intention-specific rule guarantees that the
actions of the intention are available to the agent at the right
time, without extra retrievals from long-term memory.

Semantic Memory
The semantic memory of Soar bears no major differences
from the general description of semantic memories above:
it is a knowledge store separate from short-term memory,
requiring deliberate action to store or retrieve items. As
noted, agents using semantic memory for delayed intentions
need a method of trigger a search for unfulfilled intentions.
To do this, we fall back on procedural memory to provide the
retrieval query. To properly encode the intention, the agent
must learn a data-chunk in addition to storing the intention
into semantic memory. This rule is conditioned on both the
target of the intention, as before, as well as an identifier
unique to the intention, which could be used to retrieve the
intention from semantic memory directly. To recognize the
target, the agent periodically predicts what features it might
perceive in the near future, then retrieves the identifiers of
intentions whose target contains those features. When the

target does appear, the agent uses the unique identifier to
retrieve the intention efficiently, from which it determines
the actions to take. Finally, after the intention is fulfilled,
the agent removes the identifier from working memory, thus
preventing the intention-specific rule from applying again.

Although using semantic memory allows the agent to
reason over formed intentions, falling back on data-chunks
to provide a retrieval query means that the computational
cost of data-chunking remains. Furthermore, the agent must
perform an extra retrieval for the intention’s action after the
data-chunk applies, which again expends resources. The
main benefit of using semantic memory is that it provides
a long-term mapping between intentions and unique iden-
tifiers, which can be used to directly prevent rules from
applying a second time, without the need to learn a second
rule. The alternative of only using semantic memory for this
mapping eliminates the cost of retrieving the action, but the
other costs remain.

A final drawback of this approach is that it requires an
unspecified capability to predict features of the environment.
Although this is possible using episodic memory, by recall-
ing a similar episode and using the previous outcome, the
prediction errors are likely to be large. Additionally, it is
unclear when the agent should make predictions and retrieve
intentions, although literature provides some suggestions
(Sellen et al. 1997). We leave both questions open and
merely conclude that solutions would benefit this approach
greatly.

Episodic Memory
Soar’s episodic memory differs from the general concept
of episodic memory in several ways. First, Soar’s episodic
memory automatically captures snapshots of agent’s short-
term memory; this allows intentions to be automatically
stored into memory without deliberate action by the agent.
Additionally, retrieval from Soar’s episodic memory is
biased by recency — all else being equal between two
episodes, the more recent one will be returned. Comple-
menting this bias is an architectural mechanism to restrict
the search to only the most recent version of objects.
This prevents agents from recalling episodes containing
intentions from before they were fulfilled, and has the
additional benefit of reducing the number of episodes to be
searched. After the agent fulfills the intention, it updates the
status of the intention in working memory, which then gets
automatically stored into episodic memory again, where the
search restriction above prevents it from being retrieved in
reaction to a different target.

As with semantic memory, our approach inherits the
benefit of a declarative representation. We also overcome
the problem of retrieving obsolete episodes by maintaining
pointers to the most recent version of objects, which the
agent restricts its search to. This leaves the problem of
ignored “unfulfilled” attributes, which would require the
agent to exhaustively iterate through matching intentions
until an unfulfilled one is found (or until no intentions are
applicable). Using episodic memory is also expensive in
other ways: since recognizing the target also requires search,
a retrieval must be attempted whenever the features of the

environment changes to ensure that a target has not been
missed. This cost grows quickly as the search becomes more
expensive from frequently changing environments and long
agent lifetimes.

Preliminary Evaluation
As a preliminary evaluation of how the different long-term
memories perform in fulfilling delayed intentions, we im-
plemented three agents in Soar emphasizing the advantages
of the architecture’s procedural, semantic, and episodic
memories. Additionally, we implemented an agent using
only working memory, which keeps all unfulfilled intentions
in working memory and uses intention-independent rules to
directly reason over them. Since this agent does not need
to expend resources storing and retrieving intentions from
working memory, it serves as an ideal to compare the other
agents against.

We evaluate the agents on two dimensions. First, we look
at the accuracy of the system, whether it allows agents to
fulfill delayed intentions while otherwise engaged. Second,
we consider the issue of scaling and look at whether the
agent remains reactive while coping with large numbers of
intentions.

Accuracy Evaluation
To evaluate how successfully an agent can fulfill delayed
intentions, we designed an environment which probabilis-
tically provides agents with intentions. Each intention has a
target (which may be the same target as previous intentions)
and an action, that of specifying the intention associated
with the target. A certain number of timesteps after the
intention is presented, the environment probabilistically
presents targets to intentions; these targets persist for a short
period before disappearing. Additionally, the environment
presents the agent with background tasks, which also last
for some number of timesteps. To simulate different degrees
of cognitive load, we vary the frequency with which the
environment presents intentions and targets, as well as
the length for which targets are presented and for which
background tasks persist (or rather, we vary the underlying
distribution from which the lengths are drawn). We assume
that the background task is more urgent, and therefore it
restricts the time available to the agent for the storage and
retrieval of intentions. For the semantic memory agent,
to avoid the need for prediction, we keep all identifiers
of unfulfilled intentions in short-term memory. This is
equivalent to the best case where the agent predicts all
targets perfectly; an agent in the average case would perform
worse due to prediction errors.

Within this domain, the results of the different long-term
memories are shown in Table 2. Note that although the
working memory agent represents the ideal agent, it does
not achieve perfect performance. This is due to a subset
of the targets only appearing while the agent is working on
background tasks, such that the agent did not have time to
act on the intention. Compared to the working memory
agent, only the episodic memory agent achieves similar
levels of performance; the procedural and semantic memory

Agent Intentions Fulfilled
Working memory 86.16 %
Episodic memory 78.61 %
Semantic memory 50.66 %

Procedural memory 44.78 %

Table 2: The average accuracy of agents using different long-
term memories, across multiple parameter settings. The working
memory agent is the ideal; it fails to fulfill 100% of its intentions
due to certain targets appearing while the agent is engaged.

agents fall behind. The mediocre performance of the latter
two memory systems comes from the strict requirement of
retrieval via under-specified queries. Since the retrieval of
any intention from these memories requires some knowl-
edge of the target involved, the agent must spend time
learning a production rule to provide this information, time
which the agent does not have when background tasks are
frequent. Episodic memory, on the other hand, was designed
to retrieve objects with even the smallest association with
the query, and therefore reacts to over-specification without
problems. However, it fails to perform as well as working
memory, since the memory system can only retrieve one
intention at a time, while the working memory agent can
simultaneously respond to multiple targets.

Scalability Evaluation
A long-lived agent may form a large number of intentions
over its lifetime. For a delayed intention system to be
useful, it must remain efficient when dealing with many
intentions both fulfilled and unfulfilled. To simulate this, we
focus solely on increasing the number of intentions the agent
must handle and ignore the pressures of background tasks.
The agents are presented with n intentions and the targets
for n − 1 of them, such that a single unfulfilled intention
remains. We then present the agent with the target of the
remaining intention and measure the time required for the
agent to fulfill it. Since the intended action is simple, the
major factor in this metric is the amount of time it takes
for the agent to retrieve the correct intention. Note that all
the intentions presented to the agent have the same target —
intuitively, this creates the worst case for the agents, as the
target cannot be used to distinguish between intentions. The
working memory agent is not shown, since the agent can
directly access the actions of intentions stored in working
memory.

The amount of time required to retrieve the last intention
is show in Figure 1, and the regressions in Table 3 show
how the agents scale as more intentions are fulfilled. Note
that the semantic memory agent stays consistently below
1 millisecond; this implies that semantic memory is not
affected at the scale of 10,000 intentions. The poor
performance of procedural memory is as detailed above:
since lots of working memory elements are added and
removed for every intention, the agent must do work at least
linear to the number of intentions, plus extra overhead cost.
Similarly, since the episodic memory agent must iterate
through all intentions until it finds one that is unfulfilled,

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
 (

m
s
)

Intentions over Agent Lifetime

Procedural memory
Semantic memory
Episodic memory

Episodic memory (new)

Figure 1: Time needed for different agents to retrieve a single
unfulfilled intention. The working memory agent is not included
as its intentions are already in working memory. Note that the
semantic memory and the new episodic memory agents have
response times of under a millisecond. The results of quadratic
regressions on the data is shown in Table 3.

Agent Ax2 + Bx + C

Procedural memory 6.680e-06 -0.002 0.892
Semantic memory -5.454e-10 5.936e-06 0.119
Episodic memory 2.135e-07 0.044 -0.256
Episodic memory -1.880e-09 1.912 0.225(new)

Table 3: Regression for time different agents need to retrieve an
unfulfilled intention. All agents scale on the same order as a
quadratic function, although the quadratic term is small for the
semantic memory agent.

the retrieval time therefore grows roughly linearly with the
number of intentions. In the process of this work, however,
we discovered that this linear factor is larger than it needs
to be. In particular, the search algorithm also considers
intentions which could not possibly be returned due to the
recency bias. The new episodic memory search is more than
three orders of magnitude faster than the original, making it
comparable in speed to the semantic memory agent.

Conclusions and Future Work
This work has shown that agents could use long-term
memory for the purpose of fulfilling delayed intentions,
although work remains to be done for it to be truly useful.
While procedural memory is ill-suited due to its implicit
and append-only nature, the declarative memories fare
better. Semantic memory does poorly in accuracy because
of the need to learn both procedural rules and semantic
knowledge, but does not require constant retrievals to recall
intentions within the correct context. On the other hand,
the performance of episodic memory is the closest to that of
short-term memory, but may interfere with the background
task by monopolizing the use of episodic memory. As
these mechanisms were not designed for retrieving delayed

intentions, they fail to accurately recall intentions without
disrupting the background task. We are hopeful that
there are opportunities to leverage the advantages of the
different memories to create a single, superior delayed
intention system. One particularly intriguing possibility is
that target recognition is not trigged by intention-specific
mechanism at all, but by more general-purpose indicators.
Previous research has explored the use of the spreading of
activation (Elio 2006), where the appearance of the target
causes the activation of the intention, making it likely to
be retrieved. Psychology literature also suggests several
mechanisms which leads agents to notice particular events,
one example being a discrepancy between the expected and
actual processing times (Whittlesea and Williams 2001).
The agent then attributes this discrepancy to the event being
a target to an intention, and therefore performs a retrieval.
This serves as a middle ground between the rule-based
promptings and the repeated deliberate queries used here,
and has the potential to strike the balance between the need
for preparation and the need for information capturing.

Acknowledgements
The authors acknowledge the funding support of the Office
of Navy Research under grant number N00014-08-1-0099.

References
Altmann, E. M., and Trafton, J. G. 1999. Memory for goals:
An architectural perspective. In Proceedings of the 21st Annual
Conference of the Cognitive Science Society (CogSci).
Anderson, J. R. 2007. How Can the Human Mind Occur in the
Physical Universe? Oxford University Press.
Braubach, L.; Pokahr, A.; Moldt, D.; and Lamersdorf, W. 2005.
Goal representation for BDI agent systems. In Bordini, R.; Dastani,
M.; Dix, J.; and Seghrouchni, A., eds., Programming Multi-Agent
Systems (ProMAS-3), volume 3346 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg. 44–65.
Brom, C., and Lukavský, J. 2008. Episodic memory for human-
like agents and humanlike agents for episodic memory. In Papers
from the AAAI Fall Symposium on Biologically Inspired Cognitive
Architectures (BICA).
Burgess, P. W., and Shallice, T. 1997. The relationship between
prospective and retrospective memory: Neuropsychological evi-
dence. In Conway, M. A., ed., Cognitive Models of Memory. MIT
Press.
Cassimatis, N.; Bugajska, M.; Dugas, S.; Murugesan, A.; and
Bello, P. 2007. An architecture for adaptive algorithmic hybrids.
In Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2, 1520–1526. AAAI Press.
Elio, R. 2006. On modeling intentions for prospective memory
performance. In Proceedings of the 28th Annual Conference of the
Cognitive Science Society (CogSci), 1269–1274.
Forgy, C. L. 1979. On the Efficient Implementation of Production
Systems. Ph.D. Dissertation, Carnegie Mellon University, Pitts-
burgh, PA, USA.
Kanerva, P. 1993. Sparse distributed memory and related models.
In Associative Neural Memories. New York, NY, USA: Oxford
University Press, Inc. 50–76.
Laird, J. E. 1988. Recovery from incorrect knowledge in Soar. In
Proceedings of the National Conference on Artificial Intelligence.
Cambridge, MA, USA: MIT Press. 615–620.

Laird, J. E. 2008. Extending the Soar cognitive architecture. In
Proceedings of the 1st Conference on Artificial General Intelli-
gence (AGI).
Lebiere, C., and Lee, F. J. 2002. Intention superiority effect: A
context-switching account. Cognitive Systems Research 3(1):57–
65.
McDaniel, M. A., and Einstein, G. O. 2007. Prospective Memory:
An Overview and Synthesis of an Emerging Field. Sage.
Nuxoll, A. M., and Laird, J. E. 2007. Extending cognitive
architecture with episodic memory. In Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI), 1560–1565.
Vancouver, Canada: AAAI Press.
Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987. Knowledge
level learning in Soar. In Proceedings of the 6th National
Conference on Artificial Intelligence - Volume 2, AAAI’87, 499–
504. AAAI Press.
Sellen, A. J.; Louie, G.; Harris, J. E.; and Wilkins, A. J. 1997.
What brings intentions to mind? An in situ study of prospective
memory. Memory 5:483–507.
Shapiro, S. C., and Bona, J. P. 2009. The GLAIR cognitive
architecture. In Biologically Inspired Cognitive Architectures
(BICA).
Snaider, J.; McCall, R.; and Franklin, S. 2011. The LIDA
framework as a general tool for AGI. In Proceedings of the 4th
Conference on Artificial General Intelligence (AGI).
Sun, R. 2006. The CLARION Cognitive Architecture: Extending
Cognitive Modeling to Social Simulation. Cambridge University
Press.
Terrovitis, M.; Passas, S.; Vassiliadis, P.; and Timos, S. 2006.
A combination of trie-trees and inverted files for the indexing of
set-valued attributes. In Proceedings of the ACM Conference on
Information and Knowledge Management (CIKM).
Tulving, E. 1983. Elements of Episodic Memory. Oxford
University Press.
Vere, S. A. 1991. Organization of the basic agent. SIGART Bulletin
2(4):164–168.
Wang, Y., and Laird, J. E. 2006. Integrating semantic memory into
a cognitive architecture. Technical report, University of Michigan.
Whittlesea, B. W. A., and Williams, L. D. 2001. The discrepancy-
attribution hypothesis: I. the heuristic basis of feelings and famil-
iarity. Journal of Experimental Psychology: Learning, Memory,
and Cognition 27(1):3–13.

